Skip to main content

Advertisement

Log in

Hypoxia signaling in hepatocellular carcinoma: Challenges and therapeutic opportunities

  • Published:
Cancer and Metastasis Reviews Aims and scope Submit manuscript

Abstract

Hepatocellular carcinoma (HCC) is one of the most common cancers with a relatively high cancer-related mortality. The uncontrolled proliferation of HCC consumes a significant amount of oxygen, causing the development of a hypoxic tumor microenvironment (TME). Hypoxia-inducible factors (HIFs), crucial regulators in the TME, activate several cancer hallmarks leading to the hepatocarcinogenesis of HCC and resistance to current therapeutics. As such, HIFs and their signaling pathways have been explored as potential therapeutic targets for the future management of HCC. This review discusses the current understanding of the structure and function of HIFs and their complex relationship with the various cancer hallmarks. To address tumor hypoxia, this review provides an insight into the various potential novel therapeutic agents for managing HCC, such as hypoxia-activated prodrugs, HIF inhibitors, nanomaterials, antisense oligonucleotides, and natural compounds, that target HIFs/hypoxic signaling pathways in HCC. Because of HCC’s relatively high incidence and mortality rates in the past decades, greater efforts should be put in place to explore novel therapeutic approaches to improve the outcome for HCC patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability

This is a review article which is not involved in data availability statement.

References

  1. World Cancer Research Fund/American Institute for Cancer Research. Continuous Update Project Expert Report 2018. Diet, n., physical activity and liver cancer. Available at dietandcancerreport.org. Accessed 02/23/2022 

  2. Arora, L., Mohan, C. D., Yang, M. H., Rangappa, S., Deivasigamani, A., Kumar, A. P., et al. (2021). Tris(dibenzylideneacetone)dipalladium(0) (Tris DBA) abrogates tumor progression in hepatocellular carcinoma and multiple myeloma preclinical models by regulating the STAT3 signaling pathway. Cancers (Basel), 13(21). https://doi.org/10.3390/cancers13215479.

  3. Mohan, C. D., Yang, M. H., Rangappa, S., Chinnathambi, A., Alharbi, S. A., Alahmadi, T. A., et al. (2022). 3-Formylchromone counteracts STAT3 signaling pathway by elevating SHP-2 expression in hepatocellular carcinoma. Biology, 11(1). https://doi.org/10.3390/biology11010029.

  4. Sung, H., Ferlay, J., Siegel, R. L., Laversanne, M., Soerjomataram, I., Jemal, A., et al. (2021). Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA: A cancer journal for clinicians, 71(3), 209–249.

    PubMed  Google Scholar 

  5. McGlynn, K. A., Petrick, J. L., & El-Serag, H. B. (2021). Epidemiology of hepatocellular carcinoma. Hepatology, 73, 4–13.

    Article  CAS  PubMed  Google Scholar 

  6. Mastron, J. K., Siveen, K. S., Sethi, G., & Bishayee, A. (2015). Silymarin and hepatocellular carcinoma: A systematic, comprehensive, and critical review. Anti-Cancer Drugs, 26(5), 475–486. https://doi.org/10.1097/cad.0000000000000211

    Article  CAS  PubMed  Google Scholar 

  7. Raghunath, A., Sundarraj, K., Arfuso, F., Sethi, G., & Perumal, E. (2018). Dysregulation of Nrf2 in hepatocellular carcinoma: Role in cancer progression and chemoresistance. Cancers (Basel), 10(12), 481.

    Article  CAS  PubMed  Google Scholar 

  8. Forner, A., Reig, M., & Bruix, J. (2018). Hepatocellular carcinoma. Lancet, 391(10127), 1301–1314. https://doi.org/10.1016/s0140-6736(18)30010-2

    Article  PubMed  Google Scholar 

  9. Mohan, C. D., Rangappa, S., Nayak, S. C., Sethi, G., & Rangappa, K. S. (2021). Paradoxical functions of long noncoding RNAs in modulating STAT3 signaling pathway in hepatocellular carcinoma. Biochimica et Biophysica Acta - Reviews on Cancer, 1876(1), 188574. https://doi.org/10.1016/j.bbcan.2021.188574

    Article  CAS  PubMed  Google Scholar 

  10. Sajith, A. M., Narasimhamurthy, K. H., Shanmugam, M. K., Rangappa, S., Chandra Nayak, S., Chinnathambi, A., et al. (2021). Pyrimidine-2,4-dione targets STAT3 signaling pathway to induce cytotoxicity in hepatocellular carcinoma cells. Bioorganic & Medicinal Chemistry Letters, 50, 128332. https://doi.org/10.1016/j.bmcl.2021.128332

    Article  CAS  Google Scholar 

  11. Mohan, C. D., Kim, C., Siveen, K. S., Manu, K. A., Rangappa, S., Chinnathambi, A., et al. (2021). Crocetin imparts antiproliferative activity via inhibiting STAT3 signaling in hepatocellular carcinoma. IUBMB Life, 73(11), 1348–1362. https://doi.org/10.1002/iub.2555

    Article  CAS  PubMed  Google Scholar 

  12. Colagrande, S., Inghilesi, A. L., Aburas, S., Taliani, G. G., Nardi, C., & Marra, F. (2016). Challenges of advanced hepatocellular carcinoma. World Journal of Gastroenterology, 22(34), 7645.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Swamy, S. G., Kameshwar, V. H., Shubha, P. B., Looi, C. Y., Shanmugam, M. K., Arfuso, F., et al. (2017). Targeting multiple oncogenic pathways for the treatment of hepatocellular carcinoma. Targeted Oncology, 12(1), 1–10. https://doi.org/10.1007/s11523-016-0452-7

    Article  PubMed  Google Scholar 

  14. Chen, X., Tang, F.-R., Arfuso, F., Cai, W.-Q., Ma, Z., Yang, J., et al. (2020). The emerging role of long non-coding RNAs in the metastasis of hepatocellular carcinoma. Biomolecules, 10(1), 66.

    Article  Google Scholar 

  15. Keerthy, H. K., Mohan, C. D., Siveen, K. S., Fuchs, J. E., Rangappa, S., Sundaram, M. S., et al. (2014). Novel synthetic biscoumarins target tumor necrosis factor-α in hepatocellular carcinoma in vitro and in vivo. Journal of Biological Chemistry, 289(46), 31879–31890. https://doi.org/10.1074/jbc.M114.593855

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Cabibbo, G., Cucchetti, A., Cammà, C., Casadei-Gardini, A., Celsa, C., Rizzo, G. E. M., et al. (2019). Outcomes of hepatocellular carcinoma patients treated with sorafenib: A meta-analysis of Phase III trials. Future Oncology, 15(29), 3411–3422. https://doi.org/10.2217/fon-2019-0287

    Article  CAS  PubMed  Google Scholar 

  17. Méndez-Blanco, C., Fondevila, F., García-Palomo, A., González-Gallego, J., & Mauriz, J. L. (2018). Sorafenib resistance in hepatocarcinoma: Role of hypoxia-inducible factors. Experimental & Molecular Medicine, 50(10), 1–9. https://doi.org/10.1038/s12276-018-0159-1

    Article  CAS  Google Scholar 

  18. Paskeh, M. D. A., Mirzaei, S., Ashrafizadeh, M., Zarrabi, A., & Sethi, G. (2021). Wnt/β-catenin signaling as a driver of hepatocellular carcinoma progression: An emphasis on molecular pathways. Journal of Hepatocellular Carcinoma, 8, 1415.

    Article  Google Scholar 

  19. Mohan, C. D., Anilkumar, N. C., Rangappa, S., Shanmugam, M. K., Mishra, S., Chinnathambi, A., et al. (2018). Novel 1,3,4-oxadiazole induces anticancer activity by targeting NF-κB in hepatocellular carcinoma cells. Frontiers in Oncology, 8, 42. https://doi.org/10.3389/fonc.2018.00042

    Article  PubMed  PubMed Central  Google Scholar 

  20. Lee, J. H., Mohan, C. D., Deivasigamani, A., Jung, Y. Y., Rangappa, S., Basappa, S., et al. (2020). Brusatol suppresses STAT3-driven metastasis by downregulating epithelial-mesenchymal transition in hepatocellular carcinoma. Journal of Advanced Research, 26, 83–94. https://doi.org/10.1016/j.jare.2020.07.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Dai, X., Ahn, K. S., Kim, C., Siveen, K. S., Ong, T. H., Shanmugam, M. K., et al. (2015). Ascochlorin, an isoprenoid antibiotic inhibits growth and invasion of hepatocellular carcinoma by targeting STAT3 signaling cascade through the induction of PIAS3. Molecular Oncology, 9(4), 818–833. https://doi.org/10.1016/j.molonc.2014.12.008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Mohan, C. D., Bharathkumar, H., Bulusu, K. C., Pandey, V., Rangappa, S., Fuchs, J. E., et al. (2014). Development of a novel azaspirane that targets the Janus kinase-signal transducer and activator of transcription (STAT) pathway in hepatocellular carcinoma in vitro and in vivo. Journal of Biological Chemistry, 289(49), 34296–34307. https://doi.org/10.1074/jbc.M114.601104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Vaid, A. K., Gupta, A., & Momi, G. (2021). Overall survival in stage IV EGFR mutation-positive NSCLC: Comparing first-, second- and third-generation EGFR-TKIs (Review). International Journal of Oncology, 58(2), 171–184. https://doi.org/10.3892/ijo.2021.5168

    Article  CAS  PubMed  Google Scholar 

  24. Yu, Y., Zeng, D., Ou, Q., Liu, S., Li, A., Chen, Y., et al. (2019). Association of survival and immune-related biomarkers with immunotherapy in patients with non-small cell lung cancer: A meta-analysis and individual patient-level analysis. JAMA Network Open, 2(7), e196879. https://doi.org/10.1001/jamanetworkopen.2019.6879

    Article  PubMed  PubMed Central  Google Scholar 

  25. Stock-Martineau, S., Laurie, K., McKinnon, M., Zhang, T., & Wheatley-Price, P. (2021). Evolution of systemic treatment uptake and survival in advanced non-small cell lung cancer. Current Oncology, 28(1), 60–68.

    Article  Google Scholar 

  26. Or, M., Liu, B., Lam, J., Vinod, S., Xuan, W., Yeghiaian-Alvandi, R., et al. (2021). A systematic review and meta-analysis of treatment-related toxicities of curative and palliative radiation therapy in non-small cell lung cancer. Science and Reports, 11(1), 5939. https://doi.org/10.1038/s41598-021-85131-7

    Article  CAS  Google Scholar 

  27. Ma, Z., Wang, L. Z., Cheng, J. T., Lam, W. S. T., Ma, X., Xiang, X., et al. (2021). Targeting hypoxia-inducible factor-1-mediated metastasis for cancer therapy. Antioxidants & Redox Signaling, 34(18), 1484–1497. https://doi.org/10.1089/ars.2019.7935

    Article  CAS  Google Scholar 

  28. Guo, Y., Xiao, Z., Yang, L., Gao, Y., Zhu, Q., Hu, L., et al. (2020). Hypoxia-inducible factors in hepatocellular carcinoma. Oncology Reports, 43(1), 3–15.

    CAS  PubMed  Google Scholar 

  29. Chen, C., & Lou, T. (2017). Hypoxia inducible factors in hepatocellular carcinoma. Oncotarget, 8(28), 46691.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Bowyer, C., Lewis, A. L., Lloyd, A. W., Phillips, G. J., & Macfarlane, W. M. (2017). Hypoxia as a target for drug combination therapy of liver cancer. Anti-Cancer Drugs, 28(7), 771.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Manoochehri Khoshinani, H., Afshar, S., & Najafi, R. (2016). Hypoxia: A double-edged sword in cancer therapy. Cancer Investigation, 34(10), 536–545.

    Article  CAS  PubMed  Google Scholar 

  32. Kabakov, A. E., & Yakimova, A. O. (2021). Hypoxia-induced cancer cell responses driving radioresistance of hypoxic tumors: Approaches to targeting and radiosensitizing. Cancers (Basel), 13(5), 1102.

    Article  CAS  PubMed  Google Scholar 

  33. Harada, H. (2016). Hypoxia-inducible factor 1–mediated characteristic features of cancer cells for tumor radioresistance. Journal of Radiation Research, 57(S1), i99–i105.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Doktorova, H., Hrabeta, J., Khalil, M. A., & Eckschlager, T. (2015). Hypoxia-induced chemoresistance in cancer cells: The role of not only HIF-1. Biomedical papers of the Medical Faculty of the University Palacky Olomouc Czech Republic, 159(2), 166–77.

  35. Roy, S., Kumaravel, S., Sharma, A., Duran, C. L., Bayless, K. J., & Chakraborty, S. (2020). Hypoxic tumor microenvironment: Implications for cancer therapy. Experimental Biology and Medicine, 245(13), 1073–1086.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Dai, X., Ahn, K. S., Wang, L. Z., Kim, C., Deivasigamni, A., Arfuso, F., et al. (2016). Ascochlorin enhances the sensitivity of doxorubicin leading to the reversal of epithelial-to-mesenchymal transition in hepatocellular carcinoma. Molecular Cancer Therapeutics, 15(12), 2966–2976. https://doi.org/10.1158/1535-7163.mct-16-0391

    Article  CAS  PubMed  Google Scholar 

  37. Dai, X., Wang, L., Deivasigamni, A., Looi, C. Y., Karthikeyan, C., Trivedi, P., et al. (2017). A novel benzimidazole derivative, MBIC inhibits tumor growth and promotes apoptosis via activation of ROS-dependent JNK signaling pathway in hepatocellular carcinoma. Oncotarget, 8(8), 12831–12842. https://doi.org/10.18632/oncotarget.14606

    Article  PubMed  PubMed Central  Google Scholar 

  38. Lee, J. H., Mohan, C. D., Shanmugam, M. K., Rangappa, S., Sethi, G., Siveen, K. S., et al. (2020). Vitexin abrogates invasion and survival of hepatocellular carcinoma cells through targeting STAT3 signaling pathway. Biochimie, 175, 58–68. https://doi.org/10.1016/j.biochi.2020.05.006

    Article  CAS  PubMed  Google Scholar 

  39. Somu, C., Mohan, C. D., Ambekar, S., Dukanya Rangappa, S., Baburajeev, C. P., et al. (2020). Identification of a novel 1,2 oxazine that can induce apoptosis by targeting NF-κB in hepatocellular carcinoma cells. Biotechnology Reports (Amst), 25, e00438. https://doi.org/10.1016/j.btre.2020.e00438

    Article  Google Scholar 

  40. Lin, C.-A., Chang, L.-L., Zhu, H., He, Q.-J., & Yang, B. (2018). Hypoxic microenvironment and hepatocellular carcinoma treatment. Hepatoma Research, 4, 26.

    Article  Google Scholar 

  41. Santhakumar, C., Gane, E. J., Liu, K., & McCaughan, G. W. (2020). Current perspectives on the tumor microenvironment in hepatocellular carcinoma. Hepatology International, 14(6), 947–957.

    Article  PubMed  Google Scholar 

  42. Xiong, X. X., Qiu, X. Y., Hu, D. X., & Chen, X. Q. (2017). Advances in hypoxia-mediated mechanisms in hepatocellular carcinoma. Molecular Pharmacology, 92(3), 246–255.

    Article  CAS  PubMed  Google Scholar 

  43. Han, D., Yang, P., Qin, B., Ji, G., Wu, Y., Yu, L., et al. (2021). Upregulation of Nogo-B by hypoxia inducible factor-1 and activator protein-1 in hepatocellular carcinoma. Cancer Science, 112(7), 2728.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Chiu, D. K. C., Xu, I. M. J., Lai, R. K. H., Tse, A. P. W., Wei, L. L., Koh, H. Y., et al. (2016). Hypoxia induces myeloid-derived suppressor cell recruitment to hepatocellular carcinoma through chemokine (C-C motif) ligand 26. Hepatology, 64(3), 797–813.

    Article  CAS  PubMed  Google Scholar 

  45. Pascut, D., Pratama, M. Y., Vo, N. V., Masadah, R., & Tiribelli, C. (2020). The crosstalk between tumor cells and the microenvironment in hepatocellular carcinoma: The role of exosomal microRNAs and their clinical implications. Cancers (Basel), 12(4), 823.

    Article  CAS  PubMed  Google Scholar 

  46. Yang, D., Wang, J., Xiao, M., Zhou, T., & Shi, X. (2016). Role of Mir-155 in controlling HIF-1α level and promoting endothelial cell maturation. Science and Reports, 6(1), 1–10.

    Google Scholar 

  47. Chen, J. (2018). The prognostic analysis of different metastatic patterns in advanced liver cancer patients: A population based analysis. PLoS ONE, 13(8), e0200909.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Zhang, J., Gu, C., Song, Q., Zhu, M., Xu, Y., Xiao, M., et al. (2020). Identifying cancer-associated fibroblasts as emerging targets for hepatocellular carcinoma. Cell & Bioscience, 10(1), 127. https://doi.org/10.1186/s13578-020-00488-y

    Article  CAS  Google Scholar 

  49. Hu, W., Zheng, S., Guo, H., Dai, B., Ni, J., Shi, Y., et al. (2021). PLAGL2-EGFR-HIF-1/2α signaling loop promotes HCC progression and erlotinib insensitivity. Hepatology, 73(2), 674–691. https://doi.org/10.1002/hep.31293

    Article  CAS  PubMed  Google Scholar 

  50. Zhu, Y., Gao, X. M., Yang, J., Xu, D., Zhang, Y., Lu, M., et al. (2018). C-C chemokine receptor type 1 mediates osteopontin-promoted metastasis in hepatocellular carcinoma. Cancer Science, 109(3), 710–723. https://doi.org/10.1111/cas.13487

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Liu, Z., Wang, Y., Dou, C., Xu, M., Sun, L., Wang, L., et al. (2018). Hypoxia-induced up-regulation of VASP promotes invasiveness and metastasis of hepatocellular carcinoma. Theranostics, 8(17), 4649–4663. https://doi.org/10.7150/thno.26789

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Tian, X. P., Wang, C. Y., Jin, X. H., Li, M., Wang, F. W., Huang, W. J., et al. (2019). Acidic microenvironment up-regulates exosomal miR-21 and miR-10b in early-stage hepatocellular carcinoma to promote cancer cell proliferation and metastasis. Theranostics, 9(7), 1965–1979. https://doi.org/10.7150/thno.30958

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Huang, Z., Zhou, J.-K., Peng, Y., He, W., & Huang, C. (2020). The role of long noncoding RNAs in hepatocellular carcinoma. Molecular Cancer, 19(1), 77. https://doi.org/10.1186/s12943-020-01188-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Barth, D. A., Prinz, F., Teppan, J., Jonas, K., Klec, C., & Pichler, M. (2020). Long-noncoding RNA (lncRNA) in the regulation of hypoxia-inducible factor (HIF) in cancer. Non-Coding RNA, 6(3), 27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Zhang, Q., Cheng, Q., Xia, M., Huang, X., He, X., & Liao, J. (2020). Hypoxia-induced lncRNA-NEAT1 sustains the growth of hepatocellular carcinoma via regulation of miR-199a-3p/UCK2. Frontiers in Oncology, 10, 998. https://doi.org/10.3389/fonc.2020.00998

    Article  PubMed  PubMed Central  Google Scholar 

  56. Zhao, Z.-B., Chen, F., & Bai, X.-F. (2019). Long noncoding RNA MALAT1 regulates hepatocellular carcinoma growth under hypoxia via sponging microRNA-200a. Yonsei Medical Journal, 60(8), 727–734.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Zeng, Z., Shi, Z., Liu, Y., Zhao, J., Lu, Q., Guo, J., et al. (2021). HIF-1α-activated TM4SF1-AS1 promotes the proliferation, migration, and invasion of hepatocellular carcinoma cells by enhancing TM4SF1 expression. Biochemical and Biophysical Research Communications, 566, 80–86. https://doi.org/10.1016/j.bbrc.2021.06.011

    Article  CAS  PubMed  Google Scholar 

  58. Hou, J., Zhang, H., Liu, J., Zhao, Z., Wang, J., Lu, Z., et al. (2019). YTHDF2 reduction fuels inflammation and vascular abnormalization in hepatocellular carcinoma. Molecular Cancer, 18(1), 163. https://doi.org/10.1186/s12943-019-1082-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Yuen, V. W., & Wong, C. C. (2020). Hypoxia-inducible factors and innate immunity in liver cancer. The Journal of Clinical Investigation, 130(10), 5052–5062. https://doi.org/10.1172/jci137553

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Wu, Q., Zhou, W., Yin, S., Zhou, Y., Chen, T., Qian, J., et al. (2019). Blocking triggering receptor expressed on myeloid cells-1-positive tumor-associated macrophages induced by hypoxia reverses immunosuppression and anti-programmed cell death ligand 1 resistance in liver cancer. Hepatology, 70(1), 198–214.

    Article  CAS  PubMed  Google Scholar 

  61. Zhang, J., Zhang, Q., Lou, Y., Fu, Q., Chen, Q., Wei, T., et al. (2018). Hypoxia-inducible factor-1α/interleukin-1β signaling enhances hepatoma epithelial–mesenchymal transition through macrophages in a hypoxic-inflammatory microenvironment. Hepatology, 67(5), 1872–1889.

    Article  CAS  PubMed  Google Scholar 

  62. Chiu, D.K.-C., Tse, A.P.-W., Xu, I.M.-J., Di Cui, J., Lai, R.K.-H., Li, L. L., et al. (2017). Hypoxia inducible factor HIF-1 promotes myeloid-derived suppressor cells accumulation through ENTPD2/CD39L1 in hepatocellular carcinoma. Nature communications, 8(1), 1–12.

    Article  CAS  Google Scholar 

  63. Niu, Y., Lin, Z., Wan, A., Sun, L., Yan, S., Liang, H., et al. (2021). Loss-of-function genetic screening identifies aldolase A as an essential driver for liver cancer cell growth under hypoxia. Hepatology, 74(3), 1461–1479.

    Article  CAS  PubMed  Google Scholar 

  64. Dong, F., Li, R., Wang, J., Zhang, Y., Yao, J., Jiang, S.-H., et al. (2021). Hypoxia-dependent expression of MAP17 coordinates the Warburg effect to tumor growth in hepatocellular carcinoma. Journal of Experimental & Clinical Cancer Research, 40(1), 1–15.

    Article  Google Scholar 

  65. Miao, B., Wei, C., Qiao, Z., Han, W., Chai, X., Lu, J., et al. (2019). eIF3a mediates HIF1α-dependent glycolytic metabolism in hepatocellular carcinoma cells through translational regulation. American Journal of Cancer Research, 9(5), 1079.

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Yang, N., Wang, T., Li, Q., Han, F., Wang, Z., Zhu, R., et al. (2021). HBXIP drives metabolic reprogramming in hepatocellular carcinoma cells via METTL3-mediated m6A modification of HIF-1α. Journal of Cellular Physiology, 236(5), 3863–3880.

    Article  CAS  PubMed  Google Scholar 

  67. Zhou, Y., Huang, Y., Hu, K., Zhang, Z., Yang, J., & Wang, Z. (2020). HIF1A activates the transcription of lncRNA RAET1K to modulate hypoxia-induced glycolysis in hepatocellular carcinoma cells via miR-100-5p. Cell Death & Disease, 11(3), 1–14.

    Article  CAS  Google Scholar 

  68. Chang, W. H., & Lai, A. G. (2020). The hypoxic tumour microenvironment: A safe haven for immunosuppressive cells and a therapeutic barrier to overcome. Cancer Letters, 487, 34–44.

    Article  CAS  PubMed  Google Scholar 

  69. Befani, C., & Liakos, P. (2018). The role of hypoxia-inducible factor-2 alpha in angiogenesis. Journal of Cellular Physiology, 233(12), 9087–9098.

    Article  CAS  PubMed  Google Scholar 

  70. Wang, S., Lu, J., You, Q., Huang, H., Chen, Y., & Liu, K. (2016). The mTOR/AP-1/VEGF signaling pathway regulates vascular endothelial cell growth. Oncotarget, 7(33), 53269.

    Article  PubMed  PubMed Central  Google Scholar 

  71. Feng, W., Xue, T., Huang, S., Shi, Q., Tang, C., Cui, G., et al. (2018). HIF-1α promotes the migration and invasion of hepatocellular carcinoma cells via the IL-8–NF-κB axis. Cellular & Molecular Biology Letters, 23(1), 1–8.

    Article  Google Scholar 

  72. Zhu, B., Chen, S., Hu, X., Jin, X., Le, Y., Cao, L., et al. (2017). Knockout of the Nogo-B gene attenuates tumor growth and metastasis in hepatocellular carcinoma. Neoplasia, 19(7), 583–593.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Cai, H., Saiyin, H., Liu, X., Han, D., Ji, G., Qin, B., et al. (2018). Nogo-B promotes tumor angiogenesis and provides a potential therapeutic target in hepatocellular carcinoma. Molecular Oncology, 12(12), 2042–2054.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Korf-Klingebiel, M., Reboll, M. R., Klede, S., Brod, T., Pich, A., Polten, F., et al. (2015). Myeloid-derived growth factor (C19orf10) mediates cardiac repair following myocardial infarction. Nature Medicine, 21(2), 140–149.

    Article  CAS  PubMed  Google Scholar 

  75. Wang, X., Mao, J., Zhou, T., Chen, X., Tu, H., Ma, J., et al. (2021). Hypoxia-induced myeloid derived growth factor promotes hepatocellular carcinoma progression through remodeling tumor microenvironment. Theranostics, 11(1), 209.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Lin, X.-J., Fang, J.-H., Yang, X.-J., Zhang, C., Yuan, Y., Zheng, L., et al. (2018). Hepatocellular carcinoma cell-secreted exosomal microRNA-210 promotes angiogenesis in vitro and in vivo. Molecular Therapy-Nucleic Acids, 11, 243–252.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Li, X., Li, X., Lv, X., Xiao, J., Liu, B., & Zhang, Y. (2017). Smad4 inhibits VEGF-A and VEGF-C expressions via enhancing Smad3 phosphorylation in colon cancer. The Anatomical Record, 300(9), 1560–1569.

    Article  CAS  PubMed  Google Scholar 

  78. Matsuura, Y., Wada, H., Eguchi, H., Gotoh, K., Kobayashi, S., Kinoshita, M., et al. (2019). Exosomal miR-155 derived from hepatocellular carcinoma cells under hypoxia promotes angiogenesis in endothelial cells. Digestive Diseases and Sciences, 64(3), 792–802.

    Article  CAS  PubMed  Google Scholar 

  79. Wu, W., He, X., Andayani, D., Yang, L., Ye, J., Li, Y., et al. (2017). Pattern of distant extrahepatic metastases in primary liver cancer: A SEER based study. Journal of Cancer, 8(12), 2312.

    Article  PubMed  PubMed Central  Google Scholar 

  80. Mohan, C. D., Bharathkumar, H., Dukanya Rangappa, S., Shanmugam, M. K., Chinnathambi, A., et al. (2018). N-substituted pyrido-1,4-oxazin-3-ones induce apoptosis of hepatocellular carcinoma cells by targeting NF-κB signaling pathway. Frontiers in Pharmacology, 9, 1125. https://doi.org/10.3389/fphar.2018.01125

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Yin, Z., Dong, C., Jiang, K., Xu, Z., Li, R., Guo, K., et al. (2019). Heterogeneity of cancer-associated fibroblasts and roles in the progression, prognosis, and therapy of hepatocellular carcinoma. Journal of Hematology & Oncology, 12(1), 101. https://doi.org/10.1186/s13045-019-0782-x

    Article  Google Scholar 

  82. Yang, M. H., Mohan, C. D., Deivasigamani, A., Chinnathambi, A., Alharbi, S. A., Rangappa, K. S., et al. (2022). Procaine abrogates the epithelial-mesenchymal transition process through modulating c-Met phosphorylation in hepatocellular carcinoma. Cancers (Basel), 14(20), 4978.

    Article  CAS  PubMed  Google Scholar 

  83. Jung, Y. Y., Mohan, C. D., Eng, H., Narula, A. S., Namjoshi, O. A., Blough, B. E., et al. (2022). 2,3,5,6-Tetramethylpyrazine targets epithelial-mesenchymal transition by abrogating manganese superoxide dismutase expression and TGFβ-driven signaling cascades in colon cancer cells. Biomolecules, 12(7), 891.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Cheng, J.-T., Wang, L., Wang, H., Tang, F.-R., Cai, W.-Q., Sethi, G., et al. (2019). Insights into biological role of LncRNAs in epithelial-mesenchymal transition. Cells, 8(10). https://doi.org/10.3390/cells8101178

  85. Wee, I., Syn, N., Sethi, G., Goh, B. C., & Wang, L. (2019). Role of tumor-derived exosomes in cancer metastasis. Biochimica et Biophysica Acta - Reviews on Cancer, 1871(1), 12–19. https://doi.org/10.1016/j.bbcan.2018.10.004

    Article  CAS  PubMed  Google Scholar 

  86. Sebastian, A., Pandey, V., Mohan, C. D., Chia, Y. T., Rangappa, S., Mathai, J., et al. (2016). Novel adamantanyl-based thiadiazolyl pyrazoles targeting EGFR in triple-negative breast cancer. ACS Omega, 1(6), 1412–1424. https://doi.org/10.1021/acsomega.6b00251

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Gurzu, S., Kobori, L., Fodor, D., & Jung, I. (2019). Epithelial mesenchymal and endothelial mesenchymal transitions in hepatocellular carcinoma: A review. BioMed Research International, 2019, 2962580. https://doi.org/10.1155/2019/2962580

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Chen, X., Zhang, S., Wang, Z., Wang, F., Cao, X., Wu, Q., et al. (2018). Supervillin promotes epithelial-mesenchymal transition and metastasis of hepatocellular carcinoma in hypoxia via activation of the RhoA/ROCK-ERK/p38 pathway. Journal of Experimental & Clinical Cancer Research, 37(1), 128. https://doi.org/10.1186/s13046-018-0787-2

    Article  CAS  Google Scholar 

  89. Sheu, B. C., Chang, W. C., Cheng, C. Y., Lin, H. H., Chang, D. Y., & Huang, S. C. (2008). Cytokine regulation networks in the cancer microenvironment. Frontiers in Bioscience, 13, 6255–6268. https://doi.org/10.2741/3152

    Article  CAS  PubMed  Google Scholar 

  90. El-Tanani, M. K. (2008). Role of osteopontin in cellular signaling and metastatic phenotype. Frontiers in Bioscience, 13, 4276–4284. https://doi.org/10.2741/3004

    Article  CAS  PubMed  Google Scholar 

  91. Barreca, M. M., Zichittella, C., Alessandro, R., & Conigliaro, A. (2021). Hypoxia-induced non-coding RNAs controlling cell viability in cancer. International Journal of Molecular Sciences, 22(4), 1857.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Li, Y., Chen, G., Yan, Y., & Fan, Q. (2019). CASC15 promotes epithelial to mesenchymal transition and facilitates malignancy of hepatocellular carcinoma cells by increasing TWIST1 gene expression via miR-33a-5p sponging. European Journal of Pharmacology, 860, 172589. https://doi.org/10.1016/j.ejphar.2019.172589

    Article  CAS  PubMed  Google Scholar 

  93. Ji, J., Rong, Y., Luo, C. L., Li, S., Jiang, X., Weng, H., et al. (2018). Up-regulation of hsa-miR-210 promotes venous metastasis and predicts poor prognosis in hepatocellular carcinoma. Frontiers in Oncology, 8, 569. https://doi.org/10.3389/fonc.2018.00569

    Article  PubMed  PubMed Central  Google Scholar 

  94. Hashemi, M., Hajimazdarany, S., Mohan, C. D., Mohammadi, M., Rezaei, S., Olyaee, Y., et al. (2022). Long non-coding RNA/epithelial-mesenchymal transition axis in human cancers: Tumorigenesis, chemoresistance, and radioresistance. Pharmacological Research, 186, 106535. https://doi.org/10.1016/j.phrs.2022.106535

    Article  CAS  PubMed  Google Scholar 

  95. Pan, X. Y., Huang, C., & Li, J. (2021). The emerging roles of m(6)A modification in liver carcinogenesis. International Journal of Biological Sciences, 17(1), 271–284. https://doi.org/10.7150/ijbs.50003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Wang, B., Zhao, Q., Zhang, Y., Liu, Z., Zheng, Z., Liu, S., et al. (2021). Targeting hypoxia in the tumor microenvironment: A potential strategy to improve cancer immunotherapy. Journal of Experimental & Clinical Cancer Research, 40(1), 24. https://doi.org/10.1186/s13046-020-01820-7

    Article  Google Scholar 

  97. Qin, W., Cao, Z.-Y., Liu, S.-Y., & Xu, X.-D. (2020). Recent advances regarding tumor microenvironment and immunotherapy in hepatocellular carcinoma. Hepatoma Research, 6, 24.

    CAS  Google Scholar 

  98. Li, L., Yu, R., Cai, T., Chen, Z., Lan, M., Zou, T., et al. (2020). Effects of immune cells and cytokines on inflammation and immunosuppression in the tumor microenvironment. International Immunopharmacology, 88, 106939.

    Article  CAS  PubMed  Google Scholar 

  99. Khandia, R., & Munjal, A. (2020). Interplay between inflammation and cancer. Advances in Protein Chemistry and Structural Biology, 119, 199–245.

    Article  CAS  PubMed  Google Scholar 

  100. Fu, Y., Liu, S., Zeng, S., & Shen, H. (2019). From bench to bed: The tumor immune microenvironment and current immunotherapeutic strategies for hepatocellular carcinoma. Journal of Experimental & Clinical Cancer Research, 38(1), 396. https://doi.org/10.1186/s13046-019-1396-4

    Article  Google Scholar 

  101. Mo, Z., Liu, D., Rong, D., & Zhang, S. (2021). Hypoxic characteristic in the immunosuppressive microenvironment of hepatocellular carcinoma. Frontiers in Immunology, 12, 611058. https://doi.org/10.3389/fimmu.2021.611058

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Veglia, F., & Gabrilovich, D. I. (2017). Dendritic cells in cancer: The role revisited. Current Opinion in Immunology, 45, 43–51. https://doi.org/10.1016/j.coi.2017.01.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Umezaki, N., Nakagawa, S., Yamashita, Y.-I., Kitano, Y., Arima, K., Miyata, T., et al. (2019). Lysyl oxidase induces epithelial-mesenchymal transition and predicts intrahepatic metastasis of hepatocellular carcinoma. Cancer Science, 110(6), 2033–2043. https://doi.org/10.1111/cas.14010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Tcyganov, E., Mastio, J., Chen, E., & Gabrilovich, D. I. (2018). Plasticity of myeloid-derived suppressor cells in cancer. Current Opinion in Immunology, 51, 76–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Noman, M. Z., Desantis, G., Janji, B., Hasmim, M., Karray, S., Dessen, P., et al. (2014). PD-L1 is a novel direct target of HIF-1α, and its blockade under hypoxia enhanced MDSC-mediated T cell activation. Journal of Experimental Medicine, 211(5), 781–790.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Xia, H., Chen, J., Gao, H., Kong, S. N., Deivasigamani, A., Shi, M., et al. (2020). Hypoxia-induced modulation of glucose transporter expression impacts 18F-fluorodeoxyglucose PET-CT imaging in hepatocellular carcinoma. European Journal of Nuclear Medicine and Molecular Imaging, 47(4), 787–797.

    Article  CAS  PubMed  Google Scholar 

  107. Lei, Y., Hu, Q., & Gu, J. (2020). Expressions of carbohydrate response element binding protein and glucose transporters in liver cancer and clinical significance. Pathology & Oncology Research, 26(2), 1331–1340.

    Article  CAS  Google Scholar 

  108. Zhang, X., Guo, J., Kaboli, P. J., Zhao, Q., Xiang, S., Shen, J., et al. (2020). Analysis of key genes regulating the warburg effect in patients with gastrointestinal cancers and selective inhibition of this metabolic pathway in liver cancer cells. OncoTargets and therapy, 13, 7295.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Yu, H., He, J., Liu, W., Feng, S., Gao, L., Xu, Y., et al. (2021). The Transcriptional Coactivator, ALL1-Fused Gene From Chromosome 9, Simultaneously Sustains Hypoxia Tolerance and Metabolic Advantages in Liver Cancer . Hepatology, 74(4), 1952–1970.

  110. Hu, M., Fu, Q., Jing, C., Zhang, X., Qin, T., & Pan, Y. (2020). LncRNA HOTAIR knockdown inhibits glycolysis by regulating miR-130a-3p/HIF1A in hepatocellular carcinoma under hypoxia. Biomedicine & Pharmacotherapy, 125, 109703.

    Article  CAS  Google Scholar 

  111. Shao, S., Duan, W., Xu, Q., Li, X., Han, L., Li, W., et al. (2019). Curcumin suppresses hepatic stellate cell-induced hepatocarcinoma angiogenesis and invasion through downregulating CTGF. Oxidative Medicine and Cellular Longevity, 2019, 8148510.

  112. Zuo, H. X., Jin, Y., Wang, Z., Li, M. Y., Zhang, Z. H., Wang, J. Y., et al. (2020). Curcumol inhibits the expression of programmed cell death-ligand 1 through crosstalk between hypoxia-inducible factor-1α and STAT3 (T705) signaling pathways in hepatic cancer. Journal of Ethnopharmacology, 257, 112835.

    Article  CAS  PubMed  Google Scholar 

  113. Li, J., Wei, H., Liu, Y., Li, Q., Guo, H., Guo, Y., et al. (2020). Curcumin inhibits hepatocellular carcinoma via regulating miR-21/TIMP3 axis. Evidence-Based Complementary and Alternative Medicine, 2020, 2892917.

  114. Izzo, C., Annunziata, M., Melara, G., Sciorio, R., Dallio, M., Masarone, M., et al. (2021). The role of resveratrol in liver disease: A comprehensive review from in vitro to clinical trials. Nutrients, 13(3), 933.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Lim, H. Y., Ong, P. S., Wang, L., Goel, A., Ding, L., Wong, A.L.-A., et al. (2021). Celastrol in cancer therapy: Recent developments, challenges and prospects. Cancer Letters, 521, 252–267.

    Article  CAS  PubMed  Google Scholar 

  116. Zhou, B., Yan, Z., Liu, R., Shi, P., Qian, S., Qu, X., et al. (2016). Prospective study of transcatheter arterial chemoembolization (TACE) with ginsenoside Rg3 versus TACE alone for the treatment of patients with advanced hepatocellular carcinoma. Radiology, 280(2), 630–639.

    Article  PubMed  Google Scholar 

  117. Ma, Z., Xiang, X., Li, S., Xie, P., Gong, Q., Goh, B.-C., et al (2022). Targeting hypoxia-inducible factor-1, for cancer treatment: Recent advances in developing small-molecule inhibitors from natural compounds. Seminars in Cancer Biology, 80, 379–390.

  118. Dai, Q., Yin, Q., Wei, L., Zhou, Y., Qiao, C., Guo, Y., et al. (2016). Oroxylin A regulates glucose metabolism in response to hypoxic stress with the involvement of Hypoxia-inducible factor-1 in human hepatoma HepG2 cells. Molecular Carcinogenesis, 55(8), 1275–1289.

    Article  CAS  PubMed  Google Scholar 

  119. Li, Y., Zhao, L., & Li, X.-F. (2021). Targeting hypoxia: Hypoxia-activated prodrugs in cancer therapy. Frontiers in Oncology, 11, 700407.

  120. Tran, N. H., Foster, N. R., Mahipal, A., Byrne, T., Hubbard, J., Silva, A., et al. (2021). Phase IB study of sorafenib and evofosfamide in patients with advanced hepatocellular and renal cell carcinomas (NCCTG N1135, Alliance). Investigational New Drugs, 39(4), 1072–1080.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Abi-Jaoudeh, N., Dayyani, F., Chen, P. J., Fernando, D., Fidelman, N., Javan, H., et al. (2021). Phase I trial on arterial embolization with hypoxia activated tirapazamine for unresectable hepatocellular carcinoma. Journal of Hepatocellular Carcinoma, 8, 421.

    Article  PubMed  PubMed Central  Google Scholar 

  122. Schneider, M. A., Linecker, M., Fritsch, R., Muehlematter, U. J., Stocker, D., Pestalozzi, B., et al. (2021). Phase Ib dose-escalation study of the hypoxia-modifier Myo-inositol trispyrophosphate in patients with hepatopancreatobiliary tumors. Nature communications, 12(1), 1–12.

    Article  CAS  Google Scholar 

  123. Wu, J., Contratto, M., Shanbhogue, K. P., Manji, G. A., O’Neil, B. H., Noonan, A., et al. (2019). Evaluation of a locked nucleic acid form of antisense oligo targeting HIF-1α in advanced hepatocellular carcinoma. World Journal of Clinical Oncology, 10(3), 149.

    Article  PubMed  PubMed Central  Google Scholar 

  124. Zhu, H., Wang, D.-D., Yuan, T., Yan, F.-J., Zeng, C.-M., Dai, X.-Y., et al. (2018). Multikinase inhibitor CT-707 targets liver cancer by interrupting the hypoxia-activated IGF-1R–YAP axis. Cancer Research, 78(14), 3995–4006.

    Article  CAS  PubMed  Google Scholar 

  125. Xu, J., Zheng, L., Chen, J., Sun, Y., Lin, H., Jin, R.-A., et al. (2017). Increasing AR by HIF-2α inhibitor (PT-2385) overcomes the side-effects of sorafenib by suppressing hepatocellular carcinoma invasion via alteration of pSTAT3, pAKT and pERK signals. Cell Death & Disease, 8(10), e3095–e3095.

    Article  CAS  Google Scholar 

  126. Zhou, Y., Dong, X., Xiu, P., Wang, X., Yang, J., Li, L., et al. (2020). Meloxicam, a selective COX-2 inhibitor, mediates hypoxia-inducible factor-(HIF-) 1α signaling in hepatocellular carcinoma. Oxidative Medicine and Cellular Longevity, 2020, 7079308.

  127. Kashyap, D., Tuli, H. S., Yerer, M. B., Sharma, A., Sak, K., Srivastava, S., et al. (2021). Natural product-based nanoformulations for cancer therapy: Opportunities and challenges. Seminars in Cancer Biology, 69, 5–23. https://doi.org/10.1016/j.semcancer.2019.08.014

    Article  CAS  PubMed  Google Scholar 

  128. Zou, M.-Z., Liu, W.-L., Chen, H.-S., Bai, X.-F., Gao, F., Ye, J.-J., et al. (2021). Advances in nanomaterials for treatment of hypoxic tumor. National Science Review, 8(2), nwaa160.

    Article  CAS  PubMed  Google Scholar 

  129. Cavalli, R., Soster, M., & Argenziano, M. (2016). Nanobubbles: A promising efficienft tool for therapeutic delivery. Therapeutic delivery, 7(2), 117–138.

    Article  CAS  PubMed  Google Scholar 

  130. Moballegh Nasery, M., Abadi, B., Poormoghadam, D., Zarrabi, A., Keyhanvar, P., Khanbabaei, H., et al. (2020). Curcumin delivery mediated by bio-based nanoparticles: A review. Molecules, 25(3). https://doi.org/10.3390/molecules25030689

  131. Khan, M. S., Hwang, J., Lee, K., Choi, Y., Seo, Y., Jeon, H., et al. (2019). Anti-tumor drug-loaded oxygen nanobubbles for the degradation of HIF-1α and the upregulation of reactive oxygen species in tumor cells. Cancers (Basel), 11(10), 1464.

    Article  CAS  PubMed  Google Scholar 

  132. Li, H., Chen, J., Zen, W., Xu, X., Xu, Y., Chen, Q., et al. (2015). Effect of hypoxia inducible factor-1 antisense oligonucleotide on liver cancer. International Journal of Clinical and Experimental Medicine, 8(8), 12650.

    CAS  PubMed  PubMed Central  Google Scholar 

  133. Vanderborght, B., De Muynck, K., Lefere, S., Geerts, A., Degroote, H., Verhelst, X., et al. (2020). Effect of isoform-specific HIF-1α and HIF-2α antisense oligonucleotides on tumorigenesis, inflammation and fibrosis in a hepatocellular carcinoma mouse model. Oncotarget, 11(48), 4504.

    Article  PubMed  PubMed Central  Google Scholar 

  134. Mohan, C. D., Rangappa, S., Nayak, S. C., Jadimurthy, R., Wang, L., Sethi, G., et al. (2022). Bacteria as a treasure house of secondary metabolites with anticancer potential. Seminars in Cancer Biology, 86, 998–1013. https://doi.org/10.1016/j.semcancer.2021.05.006

    Article  CAS  PubMed  Google Scholar 

  135. Jadimurthy, R., Mayegowda, S. B., Nayak, S. C., Mohan, C. D., & Rangappa, K. S. (2022). Escaping mechanisms of ESKAPE pathogens from antibiotics and their targeting by natural compounds. Biotechnology Reports, 34, e00728. https://doi.org/10.1016/j.btre.2022.e00728

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Uzma, F., Mohan, C. D., Hashem, A., Konappa, N. M., Rangappa, S., Kamath, P. V., et al. (2018). Endophytic fungi—Alternative sources of cytotoxic compounds: A review. [Review]. Front Pharmacol, 9. https://doi.org/10.3389/fphar.2018.00309

  137. Mohan, C. D., Hari, S., Preetham, H. D., Rangappa, S., Barash, U., Ilan, N., et al. (2019). Targeting heparanase in cancer: Inhibition by synthetic, chemically modified, and natural compounds. iScience, 15, 360–390. https://doi.org/10.1016/j.isci.2019.04.034

  138. Siveen, K. S., Ahn, K. S., Ong, T. H., Shanmugam, M. K., Li, F., Yap, W. N., et al. (2014). Y-tocotrienol inhibits angiogenesis-dependent growth of human hepatocellular carcinoma through abrogation of AKT/mTOR pathway in an orthotopic mouse model. Oncotarget, 5(7), 1897–1911. https://doi.org/10.18632/oncotarget.1876

    Article  PubMed  PubMed Central  Google Scholar 

  139. Merarchi, M., Sethi, G., Shanmugam, M. K., Fan, L., Arfuso, F., & Ahn, K. S. (2019). Role of natural products in modulating histone deacetylases in cancer. Molecules, 24(6), 1047.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Patel, S. M., Nagulapalli Venkata, K. C., Bhattacharyya, P., Sethi, G., & Bishayee, A. (2016). Potential of neem (Azadirachta indica L.) for prevention and treatment of oncologic diseases. Seminars in Cancer Biology, 40–41, 100–115. https://doi.org/10.1016/j.semcancer.2016.03.002

    Article  CAS  PubMed  Google Scholar 

  141. Liu, C., Ho, P. C., Wong, F. C., Sethi, G., Wang, L. Z., & Goh, B. C. (2015). Garcinol: Current status of its anti-oxidative, anti-inflammatory and anti-cancer effects. Cancer Letters, 362(1), 8–14. https://doi.org/10.1016/j.canlet.2015.03.019

    Article  CAS  PubMed  Google Scholar 

  142. Manu, K. A., Shanmugam, M. K., Ramachandran, L., Li, F., Fong, C. W., Kumar, A. P., et al. (2012). First evidence that γ-tocotrienol inhibits the growth of human gastric cancer and chemosensitizes it to capecitabine in a xenograft mouse model through the modulation of NF-κB pathway. Clinical Cancer Research, 18(8), 2220–2229. https://doi.org/10.1158/1078-0432.ccr-11-2470

    Article  CAS  PubMed  Google Scholar 

  143. Mohan, C. D., Rangappa, S., Preetham, H. D., Chandra Nayaka, S., Gupta, V. K., Basappa, S., et al. (2022). Targeting STAT3 signaling pathway in cancer by agents derived from Mother Nature. Seminars in Cancer Biology, 80, 157–182. https://doi.org/10.1016/j.semcancer.2020.03.016

    Article  CAS  PubMed  Google Scholar 

  144. Lee, J. H., Rangappa, S., Mohan, C. D., Basappa Sethi, G., Lin, Z.-X., et al. (2019). Brusatol, a Nrf2 inhibitor targets STAT3 signaling cascade in head and neck squamous cell carcinoma. Biomolecules, 9(10), 550.

    Article  PubMed  PubMed Central  Google Scholar 

  145. Lee, J. H., Mohan, C. D., Basappa, S., Rangappa, S., Chinnathambi, A., Alahmadi, T. A., et al. (2019). The IκB kinase inhibitor ACHP targets the STAT3 signaling pathway in human non-small cell lung carcinoma cells. Biomolecules, 9(12), 875.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Baek, S. H., Ko, J. H., Lee, H., Jung, J., Kong, M., Lee, J. W., et al. (2016). Resveratrol inhibits STAT3 signaling pathway through the induction of SOCS-1: Role in apoptosis induction and radiosensitization in head and neck tumor cells. Phytomedicine, 23(5), 566–577. https://doi.org/10.1016/j.phymed.2016.02.011

    Article  CAS  PubMed  Google Scholar 

  147. Shanmugam, M. K., Ahn, K. S., Lee, J. H., Kannaiyan, R., Mustafa, N., Manu, K. A., et al. (2018). Celastrol attenuates the invasion and migration and augments the anticancer effects of bortezomib in a xenograft mouse model of multiple myeloma. Frontiers in Pharmacology, 9, 365. https://doi.org/10.3389/fphar.2018.00365

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Li, S., Yu, Y., Bian, X., Yao, L., Li, M., Lou, Y.-R., et al. (2021). Prediction of oral hepatotoxic dose of natural products derived from traditional Chinese medicines based on SVM classifier and PBPK modeling. Archives of Toxicology, 95(5), 1683–1701.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We would like to express our sincere thanks to Dr. Jennie Wong, Head of Medical & Scientific Communication, Research Support Unit & Assistant Director, Office of the Dean, Yong Loo Lin School of Medicine, National University of Singapore, for her valuable advice and kind help for the revision of this article. K.S.R. thanks the Council of Scientific and Industrial Research and the Indian Science Congress Association (ISCA) for providing an Emeritus Scientist Fellowship and the Asutosh Mookerjee Fellowship, respectively. K.S.R. and C.D.M. thank the DST Promotion of University Research and Scientific Excellence (PURSE), Institution of Excellence, University of Mysore, for providing the laboratory facilities.

Funding

This research is supported by the National Research Foundation Singapore and the Singapore Ministry of Education under its Research Centres of Excellence initiative and Joint NCIS and NUS Cancer Program Seed Funding Grants (R713-009–272-733) (Wang L.). This work was also supported by the Ministry of Education Tier 1 grant to GS.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Kanchugarakoppal Subbegowda Rangappa or Lingzhi Wang.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sin, S.Q., Mohan, C.D., Goh, R.M.WJ. et al. Hypoxia signaling in hepatocellular carcinoma: Challenges and therapeutic opportunities. Cancer Metastasis Rev 42, 741–764 (2023). https://doi.org/10.1007/s10555-022-10071-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10555-022-10071-1

Keywords

Navigation