Skip to main content

Advertisement

Log in

White adipose tissue-derived factors and prostate cancer progression: mechanisms and targets for interventions

  • Published:
Cancer and Metastasis Reviews Aims and scope Submit manuscript

Abstract

Obesity represents an important risk factor for prostate cancer, driving more aggressive disease, chemoresistance, and increased mortality. White adipose tissue (WAT) overgrowth in obesity is central to the mechanisms that lead to these clinical observations. Adipose stromal cells (ASCs), the progenitors to mature adipocytes and other cell types in WAT, play a vital role in driving PCa aggressiveness. ASCs produce numerous factors, especially chemokines, including the chemokine CXCL12, which is involved in driving EMT and chemoresistance in PCa. A greater understanding of the impact of WAT in obesity-induced progression of PCa and the underlying mechanisms has begun to provide opportunities for developing interventional strategies for preventing or offsetting these critical events. These include weight loss regimens, therapeutic targeting of ASCs, use of calorie restriction mimetic compounds, and combinations of compounds as well as specific receptor targeting strategies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Hales, C. M., Carroll, M. D., Fryar, C. D., & Ogden, C. L. (2020). Prevalence of obesity and severe obesity among adults: United States, 2017–2018. NCHS Data Brief, (360), 1–8.

  2. Nomura, A. M. (2001). Body size and prostate cancer. Epidemiologic Reviews, 23(1), 126–131.

    Article  CAS  Google Scholar 

  3. Porter, M. P., & Stanford, J. L. (2005). Obesity and the risk of prostate cancer. Prostate, 62(4), 316–321.

    Article  Google Scholar 

  4. Roehl, K. A., Han, M., Ramos, C. G., Antenor, J. A., & Catalona, W. J. (2004). Cancer progression and survival rates following anatomical radical retropubic prostatectomy in 3,478 consecutive patients: Long-term results. Journal of Urology, 172(3), 910–914. https://doi.org/10.1097/01.ju.0000134888.22332.bb

    Article  PubMed  Google Scholar 

  5. Pound, C. R., Partin, A. W., Eisenberger, M. A., Chan, D. W., Pearson, J. D., & Walsh, P. C. (1999). Natural history of progression after PSA elevation following radical prostatectomy. JAMA, 281(17), 1591–1597.

    Article  CAS  Google Scholar 

  6. Flavin, R., Zadra, G., & Loda, M. (2011). Metabolic alterations and targeted therapies in prostate cancer. The Journal of Pathology, 223(2), 283–294. https://doi.org/10.1002/path.2809

    Article  CAS  PubMed  Google Scholar 

  7. Cao, Y., & Ma, J. (2011). Body mass index, prostate cancer–specific mortality, and biochemical recurrence: A systematic review and meta-analysis. Cancer Prevention Research, 4(4), 486–501. https://doi.org/10.1158/1940-6207.capr-10-0229

    Article  CAS  PubMed  Google Scholar 

  8. Freedland, S. J., Terris, M. K., Presti, J. C., Jr., Amling, C. L., Kane, C. J., Trock, B., et al. (2004). Obesity and biochemical outcome following radical prostatectomy for organ confined disease with negative surgical margins. Journal of Urology, 172(2), 520–524. https://doi.org/10.1097/01.ju.0000135302.58378.ae

    Article  PubMed  Google Scholar 

  9. Campeggi, A., Xylinas, E., Ploussard, G., Ouzaid, I., Fabre, A., Allory, Y., et al. (2012). Impact of body mass index on perioperative morbidity, oncological, and functional outcomes after extraperitoneal laparoscopic radical prostatectomy. Urology, 80(3), 576–584. https://doi.org/10.1016/j.urology.2012.04.066

    Article  PubMed  Google Scholar 

  10. Haque, R., Van Den Eeden, S. K., Wallner, L. P., Richert-Boe, K., Kallakury, B., Wang, R., et al. (2014). Association of body mass index and prostate cancer mortality. Obesity Research & Clinical Practice, 8(4), e374-381. https://doi.org/10.1016/j.orcp.2013.06.002

    Article  Google Scholar 

  11. Joshu, C. E., Mondul, A. M., Menke, A., Meinhold, C., Han, M., Humphreys, E. B., et al. (2011). Weight gain is associated with an increased risk of prostate cancer recurrence after prostatectomy in the PSA era. Cancer Prevention Research (Philadelphia, Pa.), 4(4), 544–551. https://doi.org/10.1158/1940-6207.capr-10-0257

    Article  Google Scholar 

  12. Whitley, B. M., Moreira, D. M., Thomas, J. A., Aronson, W. J., Terris, M. K., Presti, J. C., Jr., et al. (2011). Preoperative weight change and risk of adverse outcome following radical prostatectomy: Results from the Shared Equal Access Regional Cancer Hospital database. Prostate Cancer and Prostatic Diseases, 14(4), 361–366. https://doi.org/10.1038/pcan.2011.42

    Article  CAS  PubMed  Google Scholar 

  13. Chen, Q., Chen, T., Shi, W., Zhang, T., Zhang, W., Jin, Z., et al. (2016). Adult weight gain and risk of prostate cancer: A dose-response meta-analysis of observational studies. International Journal of Cancer, 138(4), 866–874. https://doi.org/10.1002/ijc.29846

    Article  CAS  PubMed  Google Scholar 

  14. Bonn, S. E., Wiklund, F., Sjolander, A., Szulkin, R., Stattin, P., Holmberg, E., et al. (2014). Body mass index and weight change in men with prostate cancer: Progression and mortality. Cancer Causes and Control, 25(8), 933–943. https://doi.org/10.1007/s10552-014-0393-3

    Article  PubMed  Google Scholar 

  15. Troeschel, A. N., Hartman, T. J., Jacobs, E. J., Stevens, V. L., Gansler, T., Flanders, W. D., et al. (2020). Postdiagnosis body mass index, weight change, and mortality from prostate cancer, cardiovascular disease, and all causes among survivors of nonmetastatic prostate cancer. Journal of Clinical Oncology, 38(18), 2018–2027. https://doi.org/10.1200/JCO.19.02185

    Article  PubMed  PubMed Central  Google Scholar 

  16. Allott, E. H., Masko, E. M., & Freedland, S. J. (2013). Obesity and prostate cancer: Weighing the evidence. European Urology, 63(5), 800–809. https://doi.org/10.1016/j.eururo.2012.11.013

    Article  CAS  PubMed  Google Scholar 

  17. Spitz, M. R., Strom, S. S., Yamamura, Y., Troncoso, P., Babaian, R. J., Scardino, P. T., et al. (2000). Epidemiologic determinants of clinically relevant prostate cancer. International Journal of Cancer, 89(3), 259–264.

    Article  CAS  Google Scholar 

  18. Eheman, C., Henley, S. J., Ballard-Barbash, R., Jacobs, E. J., Schymura, M. J., Noone, A. M., et al. (2012). Annual Report to the Nation on the status of cancer, 1975–2008, featuring cancers associated with excess weight and lack of sufficient physical activity. Cancer, 118(9), 2338–2366. https://doi.org/10.1002/cncr.27514

    Article  PubMed  Google Scholar 

  19. Zadra, G., Photopoulos, C., & Loda, M. (2013). The fat side of prostate cancer. Biochimica Et Biophysica Acta-Molecular and Cell Biology of Lipids, 1831(10), 1518–1532. https://doi.org/10.1016/J.Bbalip.2013.03.010

  20. Blando, J., Saha, A., Kiguchi, K., & DiGiovanni, J. (2013). Obesity, inflammation and prostate cancer. In A. J. Dannenberg, & N. A. Berger (Eds.), Obesity, inflammation and cancer (Vol. 7, pp. 235–256, Energy Balance and Cancer, Vol. 7). Springer.

  21. De Nunzio, C., Albisinni, S., Freedland, S. J., Miano, L., Cindolo, L., Finazzi Agro, E., et al. (2013). Abdominal obesity as risk factor for prostate cancer diagnosis and high grade disease: A prospective multicenter Italian cohort study. Urologic Oncology, 31(7), 997–1002. https://doi.org/10.1016/j.urolonc.2011.08.007

    Article  PubMed  Google Scholar 

  22. van Kruijsdijk, R. C., van der Wall, E., & Visseren, F. L. (2009). Obesity and cancer: The role of dysfunctional adipose tissue. Cancer Epidemiology, Biomarkers & Prevention, 18(10), 2569–2578. https://doi.org/10.1158/1055-9965.EPI-09-0372

    Article  CAS  Google Scholar 

  23. Lysaght, J., van der Stok, E. P., Allott, E. H., Casey, R., Donohoe, C. L., Howard, J. M., et al. (2011). Pro-inflammatory and tumour proliferative properties of excess visceral adipose tissue. Cancer Letters, 312(1), 62–72. https://doi.org/10.1016/j.canlet.2011.07.034

    Article  CAS  PubMed  Google Scholar 

  24. Coussens, L. M., & Werb, Z. (2002). Inflammation and cancer. Nature, 420(6917), 860–867. https://doi.org/10.1038/nature01322

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Cowey, S., & Hardy, R. W. (2006). The metabolic syndrome: A high-risk state for cancer? American Journal of Pathology, 169(5), 1505–1522. https://doi.org/10.2353/ajpath.2006.051090

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Park, J., Euhus, D. M., & Scherer, P. E. (2011). Paracrine and endocrine effects of adipose tissue on cancer development and progression. Endocrine Reviews, 32(4), 550–570. https://doi.org/10.1210/er.2010-0030

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Baillargeon, J., & Rose, D. P. (2006). Obesity, adipokines, and prostate cancer (review). International Journal of Oncology, 28(3), 737–745.

    CAS  PubMed  Google Scholar 

  28. Trayhurn, P., & Wood, I. S. (2004). Adipokines: Inflammation and the pleiotropic role of white adipose tissue. British Journal of Nutrition, 92(3), 347–355.

    Article  CAS  Google Scholar 

  29. Ouchi, N., Parker, J. L., Lugus, J. J., & Walsh, K. (2011). Adipokines in inflammation and metabolic disease. Nature Reviews Immunology, 11(2), 85–97. https://doi.org/10.1038/nri2921

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Khandekar, M. J., Cohen, P., & Spiegelman, B. M. (2011). Molecular mechanisms of cancer development in obesity. Nature Reviews Cancer, 11(12), 886–895. https://doi.org/10.1038/nrc3174

    Article  CAS  PubMed  Google Scholar 

  31. Roberts, D. L., Dive, C., & Renehan, A. G. (2010). Biological mechanisms linking obesity and cancer risk: New perspectives. Annual Review of Medicine, 61, 301–316. https://doi.org/10.1146/annurev.med.080708.082713

    Article  CAS  PubMed  Google Scholar 

  32. Grossmann, M. E., Ray, A., Nkhata, K. J., Malakhov, D. A., Rogozina, O. P., Dogan, S., et al. (2010). Obesity and breast cancer: Status of leptin and adiponectin in pathological processes. Cancer and Metastasis Reviews, 29(4), 641–653. https://doi.org/10.1007/s10555-010-9252-1

    Article  CAS  PubMed  Google Scholar 

  33. Johnson, A. R., Milner, J. J., & Makowski, L. (2012). The inflammation highway: Metabolism accelerates inflammatory traffic in obesity. Immunological Reviews, 249(1), 218–238. https://doi.org/10.1111/j.1600-065X.2012.01151.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Weisberg, S. P., McCann, D., Desai, M., Rosenbaum, M., Leibel, R. L., & Ferrante, A. W., Jr. (2003). Obesity is associated with macrophage accumulation in adipose tissue. The Journal of Clinical Investigation, 112(12), 1796–1808. https://doi.org/10.1172/JCI19246

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Lengyel, E., Makowski, L., DiGiovanni, J., & Kolonin, M. G. (2018). Cancer as a matter of fat: The crosstalk between adipose tissue and tumors. Trends in Cancer, 4(5), 374–384. https://doi.org/10.1016/j.trecan.2018.03.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Laurent, V., Guerard, A., Mazerolles, C., Le Gonidec, S., Toulet, A., Nieto, L., et al. (2016). Periprostatic adipocytes act as a driving force for prostate cancer progression in obesity. [Research Support, Non-U.S. Gov’t]. Nature Communications, 7, 10230. https://doi.org/10.1038/ncomms10230

  37. Palm, W., & Thompson, C. B. (2017). Nutrient acquisition strategies of mammalian cells. Nature, 546(7657), 234–242. https://doi.org/10.1038/nature22379

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Ye, H., Adane, B., Khan, N., Sullivan, T., Minhajuddin, M., Gasparetto, M., et al. (2016). Leukemic stem cells evade chemotherapy by metabolic adaptation to an adipose tissue niche. Cell Stem Cell, 19(1), 23–37. https://doi.org/10.1016/j.stem.2016.06.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Ribeiro, R., Monteiro, C., Silvestre, R., Castela, A., Coutinho, H., Fraga, A., et al. (2012). Human periprostatic white adipose tissue is rich in stromal progenitor cells and a potential source of prostate tumor stroma. [Research Support, Non-U.S. Gov’t]. Experimental Biology and Medicine, 237(10), 1155–1162. https://doi.org/10.1258/ebm.2012.012131

  40. van Roermund, J. G., Hinnen, K. A., Tolman, C. J., Bol, G. H., Witjes, J. A., Bosch, J. L., et al. (2011). Periprostatic fat correlates with tumour aggressiveness in prostate cancer patients. BJU International, 107(11), 1775–1779. https://doi.org/10.1111/j.1464-410X.2010.09811.x

    Article  PubMed  Google Scholar 

  41. Toren, P., & Venkateswaran, V. (2014). Periprostatic adipose tissue and prostate cancer progression: New insights into the tumor microenvironment. Clinical Genitourinary Cancer, 12(1), 21–26. https://doi.org/10.1016/j.clgc.2013.07.013

    Article  PubMed  Google Scholar 

  42. Finley, D. S., Calvert, V. S., Inokuchi, J., Lau, A., Narula, N., Petricoin, E. F., et al. (2009). Periprostatic adipose tissue as a modulator of prostate cancer aggressiveness. Journal of Urology, 182(4), 1621–1627. https://doi.org/10.1016/j.juro.2009.06.015

    Article  CAS  PubMed  Google Scholar 

  43. Nassar, Z. D., Aref, A. T., Miladinovic, D., Mah, C. Y., Raj, G. V., Hoy, A. J., et al. (2018). Peri-prostatic adipose tissue: The metabolic microenvironment of prostate cancer. BJU International, 121(Suppl 3), 9–21. https://doi.org/10.1111/bju.14173

    Article  PubMed  Google Scholar 

  44. Walz, J., Burnett, A. L., Costello, A. J., Eastham, J. A., Graefen, M., Guillonneau, B., et al. (2010). A critical analysis of the current knowledge of surgical anatomy related to optimization of cancer control and preservation of continence and erection in candidates for radical prostatectomy. European Urology, 57(2), 179–192. https://doi.org/10.1016/j.eururo.2009.11.009

    Article  PubMed  Google Scholar 

  45. Sung, M. T., Eble, J. N., & Cheng, L. (2006). Invasion of fat justifies assignment of stage pT3a in prostatic adenocarcinoma. Pathology, 38(4), 309–311. https://doi.org/10.1080/00313020600820914

    Article  PubMed  Google Scholar 

  46. Xie, H., Li, L., Zhu, G., Dang, Q., Ma, Z., He, D., et al. (2016). Correction: Infiltrated pre-adipocytes increase prostate cancer metastasis via modulation of the miR-301a/androgen receptor (AR)/TGF-beta1/Smad/MMP9 signals. Oncotarget, 7(50), 83829–83830. https://doi.org/10.18632/oncotarget.13913

    Article  PubMed  PubMed Central  Google Scholar 

  47. Ribeiro, R., Monteiro, C., Silvestre, R., Castela, A., Coutinho, H., Fraga, A., et al. (2012). Human periprostatic white adipose tissue is rich in stromal progenitor cells and a potential source of prostate tumor stroma. Experimental Biology and Medicine (Maywood, N.J.), 237(10), 1155–1162. https://doi.org/10.1258/ebm.2012.012131

    Article  CAS  Google Scholar 

  48. Ribeiro, R., Monteiro, C., Cunha, V., Oliveira, M. J., Freitas, M., Fraga, A., et al. (2012). Human periprostatic adipose tissue promotes prostate cancer aggressiveness in vitro. Journal of Experimental & Clinical Cancer Research, 31, 32. https://doi.org/10.1186/1756-9966-31-32

    Article  CAS  Google Scholar 

  49. Ribeiro, R. J., Monteiro, C. P., Cunha, V. F., Azevedo, A. S., Oliveira, M. J., Monteiro, R., et al. (2012). Tumor cell-educated periprostatic adipose tissue acquires an aggressive cancer-promoting secretory profile. Cellular Physiology and Biochemistry, 29(1–2), 233–240. https://doi.org/10.1159/000337604

    Article  CAS  PubMed  Google Scholar 

  50. Takeda, K., Sowa, Y., Nishino, K., Itoh, K., & Fushiki, S. (2015). Adipose-derived stem cells promote proliferation, migration, and tube formation of lymphatic endothelial cells in vitro by secreting lymphangiogenic factors. Annals of Plastic Surgery, 74(6), 728–736. https://doi.org/10.1097/SAP.0000000000000084

    Article  CAS  PubMed  Google Scholar 

  51. Zhang, Y., Daquinag, A. C., Amaya-Manzanares, F., Sirin, O., Tseng, C., & Kolonin, M. G. (2012). Stromal progenitor cells from endogenous adipose tissue contribute to pericytes and adipocytes that populate the tumor microenvironment. Cancer Research, 72(20), 5198–5208. https://doi.org/10.1158/0008-5472.CAN-12-0294

    Article  CAS  PubMed  Google Scholar 

  52. Himbert, C., Delphan, M., Scherer, D., Bowers, L. W., Hursting, S., & Ulrich, C. M. (2017). Signals from the adipose microenvironment and the obesity-cancer link-A systematic review. Cancer Prevention Research (Philadelphia, Pa.), 10(9), 494–506. https://doi.org/10.1158/1940-6207.CAPR-16-0322

    Article  CAS  Google Scholar 

  53. Ribeiro, R., Monteiro, C., Catalan, V., Hu, P., Cunha, V., Rodriguez, A., et al. (2012). Obesity and prostate cancer: Gene expression signature of human periprostatic adipose tissue. BMC Medicine, 10, 108. https://doi.org/10.1186/1741-7015-10-108

    Article  PubMed  PubMed Central  Google Scholar 

  54. Kolonin, M. G., Evans, K. W., Mani, S. A., & Gomer, R. H. (2012). Alternative origins of stroma in normal organs and disease. Stem Cell Res., 8(2), 312–323. https://doi.org/10.1016/j.scr.2011.11.005

    Article  CAS  PubMed  Google Scholar 

  55. Bellows, C. F., Zhang, Y., Chen, J., Frazier, M. L., & Kolonin, M. G. (2011). Circulation of progenitor cells in obese and lean colorectal cancer patients. Cancer Epidemiology, Biomarkers & Prevention, 20(11), 2461–2468.

    Article  CAS  Google Scholar 

  56. Bellows, C. F., Zhang, Y., Simmons, P. J., Khalsa, A. S., & Kolonin, M. G. (2011). Influence of BMI on level of circulating progenitor cells. Obesity, 19(8), 1722–1726. https://doi.org/10.1038/oby.2010.347

    Article  PubMed  Google Scholar 

  57. Zhang, Y., Daquinag, A., Traktuev, D. O., Amaya, F., Simmons, P. J., March, K. L., et al. (2009). White adipose tissue cells are recruited by experimental tumors and promote cancer progression in mouse models. Cancer Research, 69(12), 5259–5266.

    Article  CAS  Google Scholar 

  58. Klopp, A. H., Zhang, Y., Solley, T., Amaya-Manzanares, F., Marini, F., Andreeff, M., et al. (2012). Omental adipose tissue-derived stromal cells promote vascularization and growth of endometrial tumors. Clinical Cancer Research, 18(3), 771–782. https://doi.org/10.1158/1078-0432.CCR-11-1916

    Article  CAS  PubMed  Google Scholar 

  59. Sirin, O., & Kolonin, M. G. (2013). Treatment of obesity as a potential complementary approach to cancer therapy. Drug Discovery Today, 11(12), 567–573.

    Article  Google Scholar 

  60. Zhang, T., Tseng, C., Zhang, Y., Sirin, O., Corn, P. G., Li-Ning-Tapia, E. M., et al. (2016). CXCL1 mediates obesity-associated adipose stromal cell trafficking and function in the tumour microenvironment. Nature Communications, 7, 11674. https://doi.org/10.1038/ncomms11674

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Peng, Y. C., Levine, C. M., Zahid, S., Wilson, E. L., & Joyner, A. L. (2013). Sonic hedgehog signals to multiple prostate stromal stem cells that replenish distinct stromal subtypes during regeneration. [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov’t]. Proceedings of the National Academy of Sciences, 110(51), 20611–20616. https://doi.org/10.1073/pnas.1315729110

  62. Zhang, Y., & Kolonin, M. G. (2016). Cytokine signaling regulating adipose stromal cell trafficking. Adipocyte, 5(4), 369–374. https://doi.org/10.1080/21623945.2016.1220452

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Kaplan, J. L., Marshall, M. A., McSkimming, C. C., Harmon, D. B., Garmey, J. C., Oldham, S. N., et al. (2015). Adipocyte progenitor cells initiate monocyte chemoattractant protein-1-mediated macrophage accumulation in visceral adipose tissue. Molecular Metabolism, 4(11), 779–794. https://doi.org/10.1016/j.molmet.2015.07.010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Murdoch, C., Muthana, M., Coffelt, S. B., & Lewis, C. E. (2008). The role of myeloid cells in the promotion of tumour angiogenesis. Nature Reviews Cancer, 8(8), 618–631. https://doi.org/10.1038/nrc2444

    Article  CAS  PubMed  Google Scholar 

  65. Iyengar, N. M., Brown, K. A., Zhou, X. K., Gucalp, A., Subbaramaiah, K., Giri, D. D., et al. (2017). Metabolic obesity, adipose inflammation and elevated breast aromatase in women with normal body mass index. Cancer Prevention Research, 10(4), 235–243. https://doi.org/10.1158/1940-6207.CAPR-16-0314

    Article  CAS  PubMed  Google Scholar 

  66. Hanahan, D., & Coussens, L. M. (2012). Accessories to the crime: Functions of cells recruited to the tumor microenvironment. Cancer Cell, 21(3), 309–322. https://doi.org/10.1016/j.ccr.2012.02.022

    Article  CAS  PubMed  Google Scholar 

  67. Lu, P., Weaver, V. M., & Werb, Z. (2012). The extracellular matrix: A dynamic niche in cancer progression. Journal of Cell Biology, 196(4), 395–406. https://doi.org/10.1083/jcb.201102147

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Park, J., Morley, T. S., Kim, M., Clegg, D. J., & Scherer, P. E. (2014). Obesity and cancer--mechanisms underlying tumour progression and recurrence. [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov’t Research Support, U.S. Gov’t, Non-P.H.S. Review]. Nature Reviews Endocrinology, 10(8), 455–465. https://doi.org/10.1038/nrendo.2014.94

  69. Kidd, S., Spaeth, E., Watson, K., Burks, J., Lu, H., Klopp, A., et al. (2012). Origins of the tumor microenvironment: Quantitative assessment of adipose-derived and bone marrow-derived stroma. PLoS ONE, 7(2), e30563. https://doi.org/10.1371/journal.pone.0030563

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Orecchioni, S., Gregato, G., Martin-Padura, I., Reggiani, F., Braidotti, P., Mancuso, P., et al. (2013). Complementary populations of human adipose CD34+ progenitor cells promote growth, angiogenesis, and metastasis of breast cancer. [Research Support, Non-U.S. Gov’t]. Cancer Research, 73(19), 5880–5891. https://doi.org/10.1158/0008-5472.CAN-13-0821

  71. Rowan, B. G., Gimble, J. M., Sheng, M., Anbalagan, M., Jones, R. K., Frazier, T. P., et al. (2014). Human adipose tissue-derived stromal/stem cells promote migration and early metastasis of triple negative breast cancer xenografts. PLoS ONE, 9(2), e89595. https://doi.org/10.1371/journal.pone.0089595

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Martin-Padura, I., Gregato, G., Marighetti, P., Mancuso, P., Calleri, A., Corsini, C., et al. (2012). The white adipose tissue used in lipotransfer procedures is a rich reservoir of CD34+ progenitors able to promote cancer progression. Cancer Research, 72(1), 325–334. https://doi.org/10.1158/0008-5472.CAN-11-1739

    Article  CAS  PubMed  Google Scholar 

  73. Zhao, M., Dumur, C. I., Holt, S. E., Beckman, M. J., & Elmore, L. W. (2010). Multipotent adipose stromal cells and breast cancer development: Think globally, act locally. Molecular Carcinogenesis, 49(11), 923–927. https://doi.org/10.1002/mc.20675

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Picon-Ruiz, M., Pan, C., Drews-Elger, K., Jang, K., Besser, A. H., Zhao, D., et al. (2016). Interactions between adipocytes and breast cancer cells stimulate cytokine production and drive Src/Sox2/miR-302b-mediated malignant progression. Cancer Research, 76(2), 491–504. https://doi.org/10.1158/0008-5472.CAN-15-0927

    Article  CAS  PubMed  Google Scholar 

  75. Nowicka, A., Marini, F. C., Solley, T. N., Elizondo, P. B., Zhang, Y., Sharp, H. J., et al. (2013). Human omental-derived adipose stem cells increase ovarian cancer proliferation, migration, and chemoresistance. PLoS ONE, 8(12), e81859. https://doi.org/10.1371/journal.pone.0081859

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Salimian Rizi, B., Caneba, C., Nowicka, A., Nabiyar, A. W., Liu, X., Chen, K., et al. (2015). Nitric oxide mediates metabolic coupling of omentum-derived adipose stroma to ovarian and endometrial cancer cells. [Research Support, Non-U.S. Gov’t]. Cancer Research, 75(2), 456–4571. https://doi.org/10.1158/0008-5472.CAN-14-1337

  77. Duong, M. N., Cleret, A., Matera, E. L., Chettab, K., Mathe, D., Valsesia-Wittmann, S., et al. (2015). Adipose cells promote resistance of breast cancer cells to trastuzumab-mediated antibody-dependent cellular cytotoxicity. Breast Cancer Research, 17, 57–63. https://doi.org/10.1186/s13058-015-0569-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Houthuijzen, J. M., Daenen, L. G., Roodhart, J. M., & Voest, E. E. (2012). The role of mesenchymal stem cells in anti-cancer drug resistance and tumour progression. [Review]. British Journal of Cancer, 106(12), 1901–1906. https://doi.org/10.1038/bjc.2012.201

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Su, F., Ahn, S., Saha, A., DiGiovanni, J., & Kolonin, M. G. (2019). Adipose stromal cell targeting suppresses prostate cancer epithelial-mesenchymal transition and chemoresistance. Oncogene, 38(11), 1979–1988. https://doi.org/10.1038/s41388-018-0558-8

    Article  CAS  PubMed  Google Scholar 

  80. Giovannucci, E., & Michaud, D. (2007). The role of obesity and related metabolic disturbances in cancers of the colon, prostate, and pancreas. Gastroenterology, 132(6), 2208–2225. https://doi.org/10.1053/j.gastro.2007.03.050

    Article  CAS  PubMed  Google Scholar 

  81. Giovannucci, E., Rimm, E. B., Colditz, G. A., Stampfer, M. J., Ascherio, A., Chute, C. C., et al. (1993). A prospective study of dietary fat and risk of prostate cancer. Journal of the National Cancer Institute, 85(19), 1571–1579.

    Article  CAS  Google Scholar 

  82. Freedland, S. J., & Aronson, W. J. (2004). Examining the relationship between obesity and prostate cancer. Revista de Urología, 6(2), 73–81.

    Google Scholar 

  83. Strom, S. S., Wang, X., Pettaway, C. A., Logothetis, C. J., Yamamura, Y., Do, K. A., et al. (2005). Obesity, weight gain, and risk of biochemical failure among prostate cancer patients following prostatectomy. Clinical Cancer Research, 11(19 Pt 1), 6889–6894.

    Article  CAS  Google Scholar 

  84. Frasca, F., Pandini, G., Sciacca, L., Pezzino, V., Squatrito, S., Belfiore, A., et al. (2008). The role of insulin receptors and IGF-I receptors in cancer and other diseases. Archives of Physiology and Biochemistry, 114(1), 23–37. https://doi.org/10.1080/13813450801969715

    Article  CAS  PubMed  Google Scholar 

  85. Blando, J., Moore, T., Hursting, S., Jiang, G., Saha, A., Beltran, L., et al. (2011). Dietary energy balance modulates prostate cancer progression in Hi-Myc mice. [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov’t]. Cancer Prevention Research, 4(12), 2002–2014. https://doi.org/10.1158/1940-6207.CAPR-11-0182

  86. Saha, A., Ahn, S., Blando, J., Su, F., Kolonin, M. G., & DiGiovanni, J. (2017). Proinflammatory CXCL12-CXCR4/CXCR7 signaling axis drives Myc-induced prostate cancer in obese mice. Cancer Research. https://doi.org/10.1158/0008-5472.CAN-17-0284

    Article  PubMed  PubMed Central  Google Scholar 

  87. Rossi, E. L., Khatib, S. A., Doerstling, S. S., Bowers, L. W., Pruski, M., Ford, N. A., et al. (2018). Resveratrol inhibits obesity-associated adipose tissue dysfunction and tumor growth in a mouse model of postmenopausal claudin-low breast cancer. Molecular Carcinogenesis, 57(3), 393–407. https://doi.org/10.1002/mc.22763

    Article  CAS  PubMed  Google Scholar 

  88. Checkley, L. A., Rho, O., Angel, J. M., Cho, J., Blando, J., Beltran, L., et al. (2014). Metformin inhibits skin tumor promotion in overweight and obese mice. Cancer Prevention Research (Philadelphia, Pa.), 7(1), 54–64. https://doi.org/10.1158/1940-6207.CAPR-13-0110

    Article  CAS  Google Scholar 

  89. Moore, T., Beltran, L., Carbajal, S., Hursting, S. D., & DiGiovanni, J. (2012). Energy balance modulates mouse skin tumor promotion through altered IGF-1R and EGFR crosstalk. Cancer Prevention Research (Philadelphia, Pa.), 5(10), 1236–1246. https://doi.org/10.1158/1940-6207.CAPR-12-0234

    Article  CAS  Google Scholar 

  90. Aiuti, A., Webb, I. J., Bleul, C., Springer, T., & Gutierrez-Ramos, J. C. (1997). The chemokine SDF-1 is a chemoattractant for human CD34+ hematopoietic progenitor cells and provides a new mechanism to explain the mobilization of CD34+ progenitors to peripheral blood. Journal of Experimental Medicine, 185(1), 111–120.

    Article  CAS  Google Scholar 

  91. Secchiero, P., Celeghini, C., Cutroneo, G., Di Baldassarre, A., Rana, R., & Zauli, G. (2000). Differential effects of stromal derived factor-1 alpha (SDF-1 alpha) on early and late stages of human megakaryocytic development. Anatomical Record, 260(2), 141–147.

    Article  CAS  Google Scholar 

  92. Hattermann, K., & Mentlein, R. (2013). An infernal trio: The chemokine CXCL12 and its receptors CXCR4 and CXCR7 in tumor biology. [Review]. Annals of Anatomy, 195(2), 103–110. https://doi.org/10.1016/j.aanat.2012.10.013

    Article  CAS  PubMed  Google Scholar 

  93. Conley-LaComb, M. K., Saliganan, A., Kandagatla, P., Chen, Y. Q., Cher, M. L., & Chinni, S. R. (2013). PTEN loss mediated Akt activation promotes prostate tumor growth and metastasis via CXCL12/CXCR4 signaling. Molecular Cancer, 12(1), 85. https://doi.org/10.1186/1476-4598-12-85

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Rivat, C., Sebaihi, S., Van Steenwinckel, J., Fouquet, S., Kitabgi, P., Pohl, M., et al. (2014). Src family kinases involved in CXCL12-induced loss of acute morphine analgesia. Brain, Behavior, and Immunity, 38, 38–52. https://doi.org/10.1016/j.bbi.2013.11.010

    Article  CAS  PubMed  Google Scholar 

  95. Sun, X., Cheng, G., Hao, M., Zheng, J., Zhou, X., Zhang, J., et al. (2010). CXCL12 / CXCR4 / CXCR7 chemokine axis and cancer progression. [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov’t Review]. Cancer and Metastasis Reviews, 29(4), 709–722. https://doi.org/10.1007/s10555-010-9256-x

  96. Duda, D. G., Kozin, S. V., Kirkpatrick, N. D., Xu, L., Fukumura, D., & Jain, R. K. (2011). CXCL12 (SDF1alpha)-CXCR4/CXCR7 pathway inhibition: An emerging sensitizer for anticancer therapies? Clinical Cancer Research, 17(8), 2074–2080. https://doi.org/10.1158/1078-0432.CCR-10-2636

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Decaillot, F. M., Kazmi, M. A., Lin, Y., Ray-Saha, S., Sakmar, T. P., & Sachdev, P. (2011). CXCR7/CXCR4 heterodimer constitutively recruits beta-arrestin to enhance cell migration. Journal of Biological Chemistry, 286(37), 32188–32197. https://doi.org/10.1074/jbc.M111.277038

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Levoye, A., Balabanian, K., Baleux, F., Bachelerie, F., & Lagane, B. (2009). CXCR7 heterodimerizes with CXCR4 and regulates CXCL12-mediated G protein signaling. [Research Support, Non-U.S. Gov’t]. Blood, 113(24), 6085–6093. https://doi.org/10.1182/blood-2008-12-196618

  99. Luker, K. E., Gupta, M., & Luker, G. D. (2009). Imaging chemokine receptor dimerization with firefly luciferase complementation. [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov’t]. The FASEB Journal, 23(3), 823–834. https://doi.org/10.1096/fj.08-116749

  100. Zhao, H. B., Tang, C. L., Hou, Y. L., Xue, L. R., Li, M. Q., Du, M. R., et al. (2012). CXCL12/CXCR4 axis triggers the activation of EGF receptor and ERK signaling pathway in CsA-induced proliferation of human trophoblast cells. [Clinical Trial Research Support, Non-U.S. Gov’t]. PLoS One, 7(7), e38375. https://doi.org/10.1371/journal.pone.0038375

  101. McGinn, O. J., Marinov, G., Sawan, S., & Stern, P. L. (2012). CXCL12 receptor preference, signal transduction, biological response and the expression of 5T4 oncofoetal glycoprotein. [Research Support, Non-U.S. Gov’t]. Journal of Cell Science, 125(Pt 22), 5467–5478. https://doi.org/10.1242/jcs.109488

  102. Wang, J., Shiozawa, Y., Wang, J., Wang, Y., Jung, Y., Pienta, K. J., et al. (2008). The role of CXCR7/RDC1 as a chemokine receptor for CXCL12/SDF-1 in prostate cancer. [Research Support, N.I.H., Extramural Research Support, U.S. Gov’t, Non-P.H.S.]. Journal of Biological Chemistry, 283(7), 4283–4294. https://doi.org/10.1074/jbc.M707465200

  103. Akashi, T., Koizumi, K., Tsuneyama, K., Saiki, I., Takano, Y., & Fuse, H. (2008). Chemokine receptor CXCR4 expression and prognosis in patients with metastatic prostate cancer. Cancer Science, 99(3), 539–542. https://doi.org/10.1111/j.1349-7006.2007.00712.x

    Article  CAS  PubMed  Google Scholar 

  104. Sun, Y. X., Wang, J., Shelburne, C. E., Lopatin, D. E., Chinnaiyan, A. M., Rubin, M. A., et al. (2003). Expression of CXCR4 and CXCL12 (SDF-1) in human prostate cancers (PCa) in vivo. Journal of Cellular Biochemistry, 89(3), 462–473. https://doi.org/10.1002/jcb.10522

    Article  CAS  PubMed  Google Scholar 

  105. Mochizuki, H., Matsubara, A., Teishima, J., Mutaguchi, K., Yasumoto, H., Dahiya, R., et al. (2004). Interaction of ligand-receptor system between stromal-cell-derived factor-1 and CXC chemokine receptor 4 in human prostate cancer: A possible predictor of metastasis. Biochemical and Biophysical Research Communications, 320(3), 656–663. https://doi.org/10.1016/j.bbrc.2004.06.013

    Article  CAS  PubMed  Google Scholar 

  106. Jung, S. J., Kim, C. I., Park, C. H., Chang, H. S., Kim, B. H., Choi, M. S., et al. (2011). Correlation between chemokine receptor CXCR4 expression and prognostic factors in patients with prostate cancer. Korean Journal of Urology, 52(9), 607–611. https://doi.org/10.4111/kju.2011.52.9.607

    Article  PubMed  PubMed Central  Google Scholar 

  107. Sun, Y. X., Schneider, A., Jung, Y., Wang, J., Dai, J., Wang, J., et al. (2005). Skeletal localization and neutralization of the SDF-1(CXCL12)/CXCR4 axis blocks prostate cancer metastasis and growth in osseous sites in vivo. Journal of Bone and Mineral Research, 20(2), 318–329. https://doi.org/10.1359/JBMR.041109

    Article  CAS  PubMed  Google Scholar 

  108. Cawthorn, W. P., Scheller, E. L., Learman, B. S., Parlee, S. D., Simon, B. R., Mori, H., et al. (2014). Bone marrow adipose tissue is an endocrine organ that contributes to increased circulating adiponectin during caloric restriction. Cell Metabolism, 20(2), 368–375. https://doi.org/10.1016/j.cmet.2014.06.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Devlin, M. J., Cloutier, A. M., Thomas, N. A., Panus, D. A., Lotinun, S., Pinz, I., et al. (2010). Caloric restriction leads to high marrow adiposity and low bone mass in growing mice. Journal of Bone and Mineral Research, 25(9), 2078–2088. https://doi.org/10.1002/jbmr.82

    Article  PubMed  PubMed Central  Google Scholar 

  110. Bredella, M. A., Fazeli, P. K., Miller, K. K., Misra, M., Torriani, M., Thomas, B. J., et al. (2009). Increased bone marrow fat in anorexia nervosa. Journal of Clinical Endocrinology and Metabolism, 94(6), 2129–2136. https://doi.org/10.1210/jc.2008-2532

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Morris, E. V., & Edwards, C. M. (2016). Bone marrow adipose tissue: A new player in cancer metastasis to bone. Frontiers in Endocrinology (Lausanne), 7, 90. https://doi.org/10.3389/fendo.2016.00090

    Article  Google Scholar 

  112. Herroon, M. K., Rajagurubandara, E., Hardaway, A. L., Powell, K., Turchick, A., Feldmann, D., et al. (2013). Bone marrow adipocytes promote tumor growth in bone via FABP4-dependent mechanisms. Oncotarget, 4(11), 2108–2123. https://doi.org/10.18632/oncotarget.1482

    Article  PubMed  PubMed Central  Google Scholar 

  113. Templeton, Z. S., Lie, W. R., Wang, W., Rosenberg-Hasson, Y., Alluri, R. V., Tamaresis, J. S., et al. (2015). Breast cancer cell colonization of the human bone marrow adipose tissue niche. Neoplasia, 17(12), 849–861. https://doi.org/10.1016/j.neo.2015.11.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Hardaway, A. L., Herroon, M. K., Rajagurubandara, E., & Podgorski, I. (2015). Marrow adipocyte-derived CXCL1 and CXCL2 contribute to osteolysis in metastatic prostate cancer. Clinical & Experimental Metastasis, 32(4), 353–368. https://doi.org/10.1007/s10585-015-9714-5

    Article  CAS  Google Scholar 

  115. Matsushita, Y., Chu, A. K. Y., Ono, W., Welch, J. D., & Ono, N. (2021). Intercellular interactions of an adipogenic CXCL12-expressing stromal cell subset in murine bone marrow. Journal of Bone and Mineral Research, 36(6), 1145–1158. https://doi.org/10.1002/jbmr.4282

    Article  CAS  PubMed  Google Scholar 

  116. Hebert, C. A., & Baker, J. B. (1993). Interleukin-8: A review. Cancer Investigation, 11(6), 743–750. https://doi.org/10.3109/07357909309046949

    Article  CAS  PubMed  Google Scholar 

  117. Holmes, W. E., Lee, J., Kuang, W. J., Rice, G. C., & Wood, W. I. (2009). Structure and functional expression of a human interleukin-8 receptor. Science. 1991. 253: 1278–1280. Journal of Immunology, 183(5), 2895–2897

  118. Morohashi, H., Miyawaki, T., Nomura, H., Kuno, K., Murakami, S., Matsushima, K., et al. (1995). Expression of both types of human interleukin-8 receptors on mature neutrophils, monocytes, and natural killer cells. Journal of Leukocyte Biology, 57(1), 180–187. https://doi.org/10.1002/jlb.57.1.180

    Article  CAS  PubMed  Google Scholar 

  119. Kim, S. J., Uehara, H., Karashima, T., McCarty, M., Shih, N., & Fidler, I. J. (2001). Expression of interleukin-8 correlates with angiogenesis, tumorigenicity, and metastasis of human prostate cancer cells implanted orthotopically in nude mice. Neoplasia, 3(1), 33–42. https://doi.org/10.1038/sj.neo.7900124

    Article  CAS  PubMed  Google Scholar 

  120. Miyake, M., Lawton, A., Goodison, S., Urquidi, V., & Rosser, C. J. (2014). Chemokine (C-X-C motif) ligand 1 (CXCL1) protein expression is increased in high-grade prostate cancer. Pathology, Research and Practice, 210(2), 74–78. https://doi.org/10.1016/j.prp.2013.08.013

    Article  CAS  PubMed  Google Scholar 

  121. Straczkowski, M., Dzienis-Straczkowska, S., Stepien, A., Kowalska, I., Szelachowska, M., & Kinalska, I. (2002). Plasma interleukin-8 concentrations are increased in obese subjects and related to fat mass and tumor necrosis factor-alpha system. Journal of Clinical Endocrinology and Metabolism, 87(10), 4602–4606. https://doi.org/10.1210/jc.2002-020135

    Article  CAS  PubMed  Google Scholar 

  122. Wald, O., Shapira, O. M., & Izhar, U. (2013). CXCR4/CXCL12 axis in non small cell lung cancer (NSCLC) pathologic roles and therapeutic potential. Theranostics, 3(1), 26–33. https://doi.org/10.7150/thno.4922

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Brat, D. J., Bellail, A. C., & Van Meir, E. G. (2005). The role of interleukin-8 and its receptors in gliomagenesis and tumoral angiogenesis. Neuro-Oncology, 7(2), 122–133. https://doi.org/10.1215/S1152851704001061

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Wu, D., LaRosa, G. J., & Simon, M. I. (1993). G protein-coupled signal transduction pathways for interleukin-8. Science, 261(5117), 101–103. https://doi.org/10.1126/science.8316840

    Article  CAS  PubMed  Google Scholar 

  125. Wu, Y., Wang, S., Farooq, S. M., Castelvetere, M. P., Hou, Y., Gao, J. L., et al. (2012). A chemokine receptor CXCR2 macromolecular complex regulates neutrophil functions in inflammatory diseases. Journal of Biological Chemistry, 287(8), 5744–5755. https://doi.org/10.1074/jbc.M111.315762

    Article  CAS  PubMed  Google Scholar 

  126. Fuhler, G. M., Knol, G. J., Drayer, A. L., & Vellenga, E. (2005). Impaired interleukin-8- and GROalpha-induced phosphorylation of extracellular signal-regulated kinase result in decreased migration of neutrophils from patients with myelodysplasia. Journal of Leukocyte Biology, 77(2), 257–266. https://doi.org/10.1189/jlb.0504306

    Article  CAS  PubMed  Google Scholar 

  127. Knall, C., Worthen, G. S., & Johnson, G. L. (1997). Interleukin 8-stimulated phosphatidylinositol-3-kinase activity regulates the migration of human neutrophils independent of extracellular signal-regulated kinase and p38 mitogen-activated protein kinases. Proceedings of the National Academy of Sciences, 94(7), 3052–3057. https://doi.org/10.1073/pnas.94.7.3052

    Article  CAS  Google Scholar 

  128. Thelen, M., Uguccioni, M., & Bosiger, J. (1995). PI 3-kinase-dependent and independent chemotaxis of human neutrophil leukocytes. Biochemical and Biophysical Research Communications, 217(3), 1255–1262. https://doi.org/10.1006/bbrc.1995.2903

    Article  CAS  PubMed  Google Scholar 

  129. Waugh, D. J., & Wilson, C. (2008). The interleukin-8 pathway in cancer. Clinical Cancer Research, 14(21), 6735–6741. https://doi.org/10.1158/1078-0432.CCR-07-4843

    Article  CAS  PubMed  Google Scholar 

  130. Chavey, C., Lazennec, G., Lagarrigue, S., Clape, C., Iankova, I., Teyssier, J., et al. (2009). CXC ligand 5 is an adipose-tissue derived factor that links obesity to insulin resistance. Cell Metabolism, 9(4), 339–349. https://doi.org/10.1016/j.cmet.2009.03.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Begley, L. A., Kasina, S., Mehra, R., Adsule, S., Admon, A. J., Lonigro, R. J., et al. (2008). CXCL5 promotes prostate cancer progression. Neoplasia, 10(3), 244–254. https://doi.org/10.1593/neo.07976

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Qi, Y., Zhao, W., Li, M., Shao, M., Wang, J., Sui, H., et al. (2018). High C-X-C motif chemokine 5 expression is associated with malignant phenotypes of prostate cancer cells via autocrine and paracrine pathways. International Journal of Oncology, 53(1), 358–370. https://doi.org/10.3892/ijo.2018.4388

    Article  CAS  PubMed  Google Scholar 

  133. Ammirante, M., Shalapour, S., Kang, Y., Jamieson, C. A., & Karin, M. (2014). Tissue injury and hypoxia promote malignant progression of prostate cancer by inducing CXCL13 expression in tumor myofibroblasts. Proceedings of the National Academy of Sciences, 111(41), 14776–14781. https://doi.org/10.1073/pnas.1416498111

    Article  CAS  Google Scholar 

  134. Kusuyama, J., Bandow, K., Ohnishi, T., Amir, M. S., Shima, K., Semba, I., et al. (2019). CXCL13 is a differentiation- and hypoxia-induced adipocytokine that exacerbates the inflammatory phenotype of adipocytes through PHLPP1 induction. The Biochemical Journal, 476(22), 3533–3548. https://doi.org/10.1042/BCJ20190709

    Article  CAS  PubMed  Google Scholar 

  135. Kabir, S. M., Lee, E. S., & Son, D. S. (2014). Chemokine network during adipogenesis in 3T3-L1 cells: Differential response between growth and proinflammatory factor in preadipocytes vs. adipocytes. Adipocyte, 3(2), 97–106. https://doi.org/10.4161/adip.28110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. El Haibi, C. P., Sharma, P. K., Singh, R., Johnson, P. R., Suttles, J., Singh, S., et al. (2010). PI3Kp110-, Src-, FAK-dependent and DOCK2-independent migration and invasion of CXCL13-stimulated prostate cancer cells. Molecular Cancer, 9, 85. https://doi.org/10.1186/1476-4598-9-85

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. El-Haibi, C. P., Singh, R., Sharma, P. K., Singh, S., & Lillard, J. W., Jr. (2011). CXCL13 mediates prostate cancer cell proliferation through JNK signalling and invasion through ERK activation. Cell Proliferation, 44(4), 311–319. https://doi.org/10.1111/j.1365-2184.2011.00757.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. El-Haibi, C. P., Sharma, P., Singh, R., Gupta, P., Taub, D. D., Singh, S., et al. (2013). Differential G protein subunit expression by prostate cancer cells and their interaction with CXCR5. Molecular Cancer, 12, 64. https://doi.org/10.1186/1476-4598-12-64

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Hattermann, K., Bartsch, K., Gebhardt, H. H., Mehdorn, H. M., Synowitz, M., Schmitt, A. D., et al. (2016). “Inverse signaling” of the transmembrane chemokine CXCL16 contributes to proliferative and anti-apoptotic effects in cultured human meningioma cells. Cell Communication and Signaling: CCS, 14(1), 26. https://doi.org/10.1186/s12964-016-0149-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Kurki, E., Shi, J., Martonen, E., Finckenberg, P., & Mervaala, E. (2012). Distinct effects of calorie restriction on adipose tissue cytokine and angiogenesis profiles in obese and lean mice. Nutrition & Metabolism (London), 9(1), 64. https://doi.org/10.1186/1743-7075-9-64

    Article  CAS  Google Scholar 

  141. Jung, Y., Kim, J. K., Shiozawa, Y., Wang, J., Mishra, A., Joseph, J., et al. (2013). Recruitment of mesenchymal stem cells into prostate tumours promotes metastasis. Nature Communications, 4, 1795. https://doi.org/10.1038/ncomms2766

    Article  CAS  PubMed  Google Scholar 

  142. Kapur, N., Mir, H., Sonpavde, G. P., Jain, S., Bae, S., Lillard, J. W., Jr., et al. (2019). Prostate cancer cells hyper-activate CXCR6 signaling by cleaving CXCL16 to overcome effect of docetaxel. Cancer Letters, 454, 1–13. https://doi.org/10.1016/j.canlet.2019.04.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Kanda, H., Tateya, S., Tamori, Y., Kotani, K., Hiasa, K., Kitazawa, R., et al. (2006). MCP-1 contributes to macrophage infiltration into adipose tissue, insulin resistance, and hepatic steatosis in obesity. The Journal of Clinical Investigation, 116(6), 1494–1505. https://doi.org/10.1172/JCI26498

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Sartipy, P., & Loskutoff, D. J. (2003). Monocyte chemoattractant protein 1 in obesity and insulin resistance. Proceedings of the National Academy of Sciences, 100(12), 7265–7270. https://doi.org/10.1073/pnas.1133870100

    Article  CAS  Google Scholar 

  145. Gerhardt, C. C., Romero, I. A., Cancello, R., Camoin, L., & Strosberg, A. D. (2001). Chemokines control fat accumulation and leptin secretion by cultured human adipocytes. Molecular and Cellular Endocrinology, 175(1–2), 81–92. https://doi.org/10.1016/s0303-7207(01)00394-x

    Article  CAS  PubMed  Google Scholar 

  146. Tsaur, I., Noack, A., Makarevic, J., Oppermann, E., Waaga-Gasser, A. M., Gasser, M., et al. (2015). CCL2 chemokine as a potential biomarker for prostate cancer: A pilot study. Cancer Research and Treatment, 47(2), 306–312. https://doi.org/10.4143/crt.2014.015

    Article  CAS  PubMed  Google Scholar 

  147. Gschwandtner, M., Derler, R., & Midwood, K. S. (2019). More than just attractive: How CCL2 influences myeloid cell behavior beyond chemotaxis. Frontiers in Immunology, 10, 2759. https://doi.org/10.3389/fimmu.2019.02759

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Christiansen, T., Richelsen, B., & Bruun, J. M. (2005). Monocyte chemoattractant protein-1 is produced in isolated adipocytes, associated with adiposity and reduced after weight loss in morbid obese subjects. International Journal of Obesity, 29(1), 146–150. https://doi.org/10.1038/sj.ijo.0802839

    Article  CAS  PubMed  Google Scholar 

  149. Huang, M., Narita, S., Numakura, K., Tsuruta, H., Saito, M., Inoue, T., et al. (2012). A high-fat diet enhances proliferation of prostate cancer cells and activates MCP-1/CCR2 signaling. Prostate, 72(16), 1779–1788. https://doi.org/10.1002/pros.22531

    Article  CAS  PubMed  Google Scholar 

  150. Loberg, R. D., Ying, C., Craig, M., Yan, L., Snyder, L. A., & Pienta, K. J. (2007). CCL2 as an important mediator of prostate cancer growth in vivo through the regulation of macrophage infiltration. Neoplasia, 9(7), 556–562. https://doi.org/10.1593/neo.07307

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Mathews, J. A., Wurmbrand, A. P., Ribeiro, L., Neto, F. L., & Shore, S. A. (2014). Induction of IL-17A precedes development of airway hyperresponsiveness during diet-induced obesity and correlates with complement factor D. Frontiers in Immunology, 5, 440. https://doi.org/10.3389/fimmu.2014.00440

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Xu, H., Barnes, G. T., Yang, Q., Tan, G., Yang, D., Chou, C. J., et al. (2003). Chronic inflammation in fat plays a crucial role in the development of obesity-related insulin resistance. The Journal of Clinical Investigation, 112(12), 1821–1830. https://doi.org/10.1172/JCI19451

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Fang, L. Y., Izumi, K., Lai, K. P., Liang, L., Li, L., Miyamoto, H., et al. (2013). Infiltrating macrophages promote prostate tumorigenesis via modulating androgen receptor-mediated CCL4-STAT3 signaling. Cancer Research, 73(18), 5633–5646. https://doi.org/10.1158/0008-5472.CAN-12-3228

    Article  CAS  PubMed  Google Scholar 

  154. Huang, R., Wang, S., Wang, N., Zheng, Y., Zhou, J., Yang, B., et al. (2020). CCL5 derived from tumor-associated macrophages promotes prostate cancer stem cells and metastasis via activating beta-catenin/STAT3 signaling. Cell Death & Disease, 11(4), 234. https://doi.org/10.1038/s41419-020-2435-y

    Article  CAS  Google Scholar 

  155. Liu, Y., Cai, Y., Liu, L., Wu, Y., & Xiong, X. (2018). Crucial biological functions of CCL7 in cancer. PeerJ, 6, e4928. https://doi.org/10.7717/peerj.4928

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Van Damme, J., Proost, P., Lenaerts, J. P., & Opdenakker, G. (1992). Structural and functional identification of two human, tumor-derived monocyte chemotactic proteins (MCP-2 and MCP-3) belonging to the chemokine family. Journal of Experimental Medicine, 176(1), 59–65. https://doi.org/10.1084/jem.176.1.59

    Article  PubMed  Google Scholar 

  157. Tourniaire, F., Romier-Crouzet, B., Lee, J. H., Marcotorchino, J., Gouranton, E., Salles, J., et al. (2013). Chemokine expression in inflamed adipose tissue is mainly mediated by NF-kappaB. PLoS ONE, 8(6), e66515. https://doi.org/10.1371/journal.pone.0066515

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Cuesta-Gomez, N., Graham, G. J., & Campbell, J. D. M. (2021). Chemokines and their receptors: Predictors of the therapeutic potential of mesenchymal stromal cells. Journal of Translational Medicine, 19(1), 156. https://doi.org/10.1186/s12967-021-02822-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Nagarsheth, N., Wicha, M. S., & Zou, W. (2017). Chemokines in the cancer microenvironment and their relevance in cancer immunotherapy. Nature Reviews Immunology, 17(9), 559–572. https://doi.org/10.1038/nri.2017.49

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Ford, J., Hughson, A., Lim, K., Bardina, S. V., Lu, W., Charo, I. F., et al. (2018). CCL7 is a negative regulator of cutaneous inflammation following leishmania major infection. Frontiers in Immunology, 9, 3063. https://doi.org/10.3389/fimmu.2018.03063

    Article  CAS  PubMed  Google Scholar 

  161. Palomino, D. C., & Marti, L. C. (2015). Chemokines and immunity. Einstein (Sao Paulo), 13(3), 469–473. https://doi.org/10.1590/S1679-45082015RB3438

    Article  Google Scholar 

  162. Zhu, F., Liu, P., Li, J., & Zhang, Y. (2014). Eotaxin-1 promotes prostate cancer cell invasion via activation of the CCR3-ERK pathway and upregulation of MMP-3 expression. Oncology Reports, 31(5), 2049–2054. https://doi.org/10.3892/or.2014.3060

    Article  CAS  PubMed  Google Scholar 

  163. Rosen, E. D., & Spiegelman, B. M. (2014). What we talk about when we talk about fat. Cell, 156(1–2), 20–44. https://doi.org/10.1016/j.cell.2013.12.012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Ducharme, N. A., & Bickel, P. E. (2008). Lipid droplets in lipogenesis and lipolysis. Endocrinology, 149(3), 942–949.

    Article  CAS  Google Scholar 

  165. Granneman, J. G., & Moore, H. P. (2008). Location, location: protein trafficking and lipolysis in adipocytes. [Research Support, N.I.H., Extramural Research Support, U.S. Gov’t, Non-P.H.S. Review]. Trends in Endocrinology & Metabolism, 19(1), 3–9. https://doi.org/10.1016/j.tem.2007.10.006

  166. Currie, E., Schulze, A., Zechner, R., Walther, T. C., & Farese, R. V., Jr. (2013). Cellular fatty acid metabolism and cancer. Cell Metabolism, 18(2), 153–161. https://doi.org/10.1016/j.cmet.2013.05.017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Nomura, D. K., Lombardi, D. P., Chang, J. W., Niessen, S., Ward, A. M., Long, J. Z., et al. (2011). Monoacylglycerol lipase exerts dual control over endocannabinoid and fatty acid pathways to support prostate cancer. Chemistry & Biology, 18(7), 846–856. https://doi.org/10.1016/j.chembiol.2011.05.009

    Article  CAS  Google Scholar 

  168. Wang, Y. Y., Attane, C., Milhas, D., Dirat, B., Dauvillier, S., Guerard, A., et al. (2017). Mammary adipocytes stimulate breast cancer invasion through metabolic remodeling of tumor cells. JCI Insight, 2(4), e87489. https://doi.org/10.1172/jci.insight.87489

    Article  PubMed  PubMed Central  Google Scholar 

  169. Arner, P., & Langin, D. (2014). Lipolysis in lipid turnover, cancer cachexia, and obesity-induced insulin resistance. Trends in Endocrinology and Metabolism, 25(5), 255–262. https://doi.org/10.1016/j.tem.2014.03.002

    Article  CAS  PubMed  Google Scholar 

  170. Rohm, M., Schafer, M., Laurent, V., Ustunel, B. E., Niopek, K., Algire, C., et al. (2016). An AMP-activated protein kinase-stabilizing peptide ameliorates adipose tissue wasting in cancer cachexia in mice. Nature Medicine, 22(10), 1120–1130. https://doi.org/10.1038/nm.4171

    Article  CAS  PubMed  Google Scholar 

  171. Okumura, T., Ohuchida, K., Sada, M., Abe, T., Endo, S., Koikawa, K., et al. (2017). Extra-pancreatic invasion induces lipolytic and fibrotic changes in the adipose microenvironment, with released fatty acids enhancing the invasiveness of pancreatic cancer cells. Oncotarget, 8(11), 18280–18295. https://doi.org/10.18632/oncotarget.15430

    Article  PubMed  PubMed Central  Google Scholar 

  172. Yamaguchi, J., Ohtani, H., Nakamura, K., Shimokawa, I., & Kanematsu, T. (2008). Prognostic impact of marginal adipose tissue invasion in ductal carcinoma of the breast. American Journal of Clinical Pathology, 130(3), 382–388. https://doi.org/10.1309/MX6KKA1UNJ1YG8VN

    Article  PubMed  Google Scholar 

  173. Nieman, K. M., Kenny, H. A., Penicka, C. V., Ladanyi, A., Buell-Gutbrod, R., Zillhardt, M. R., et al. (2011). Adipocytes promote ovarian cancer metastasis and provide energy for rapid tumor growth. Nature Medicine, 17(11), 1498–1503. https://doi.org/10.1038/nm.2492

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Dirat, B., Bochet, L., Dabek, M., Daviaud, D., Dauvillier, S., Majed, B., et al. (2011). Cancer-associated adipocytes exhibit an activated phenotype and contribute to breast cancer invasion. Cancer Research, 71(7), 2455–2465. https://doi.org/10.1158/0008-5472.CAN-10-3323

    Article  CAS  PubMed  Google Scholar 

  175. Balaban, S., Shearer, R. F., Lee, L. S., van Geldermalsen, M., Schreuder, M., Shtein, H. C., et al. (2017). Adipocyte lipolysis links obesity to breast cancer growth: Adipocyte-derived fatty acids drive breast cancer cell proliferation and migration. Cancer & Metabolism, 5, 1. https://doi.org/10.1186/s40170-016-0163-7

    Article  Google Scholar 

  176. Wen, Y. A., Xing, X., Harris, J. W., Zaytseva, Y. Y., Mitov, M. I., Napier, D. L., et al. (2017). Adipocytes activate mitochondrial fatty acid oxidation and autophagy to promote tumor growth in colon cancer. Cell Death & Disease, 8(2), e2593. https://doi.org/10.1038/cddis.2017.21

    Article  CAS  Google Scholar 

  177. Daquinag, A. C., Gao, Z., Fussell, C., Immaraj, L., Pasqualini, R., Arap, W., et al. (2021). Fatty acid mobilization from adipose tissue is mediated by CD36 posttranslational modifications and intracellular trafficking. JCI Insight, 6(17). https://doi.org/10.1172/jci.insight.147057

  178. Su, F., Daquinag, A. C., Ahn, S., Saha, A., Dai, Y., Zhao, Z., et al. (2021). Progression of prostate carcinoma is promoted by adipose stromal cell-secreted CXCL12 signaling in prostate epithelium. NPJ Precision Oncology, 5(1), 26. https://doi.org/10.1038/s41698-021-00160-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  179. Leitner, B. P., Huang, S., Brychta, R. J., Duckworth, C. J., Baskin, A. S., McGehee, S., et al. (2017). Mapping of human brown adipose tissue in lean and obese young men. Proceedings of the National Academy of Sciences, 114(32), 8649–8654. https://doi.org/10.1073/pnas.1705287114

    Article  CAS  Google Scholar 

  180. Alvarez-Artime, A., Garcia-Soler, B., Sainz, R. M., & Mayo, J. C. (2021). Emerging roles for browning of white adipose tissue in prostate cancer malignant behaviour. International Journal of Molecular Sciences, 22(11). https://doi.org/10.3390/ijms22115560

  181. Collins, S. (2011). beta-Adrenoceptor signaling networks in adipocytes for recruiting stored fat and energy expenditure. Frontiers in Endocrinology (Lausanne), 2, 102. https://doi.org/10.3389/fendo.2011.00102

    Article  Google Scholar 

  182. Puigserver, P., Wu, Z., Park, C. W., Graves, R., Wright, M., & Spiegelman, B. M. (1998). A cold-inducible coactivator of nuclear receptors linked to adaptive thermogenesis. Cell, 92(6), 829–839. https://doi.org/10.1016/s0092-8674(00)81410-5

    Article  CAS  PubMed  Google Scholar 

  183. Hursting, S. D., Dunlap, S. M., Ford, N. A., Hursting, M. J., & Lashinger, L. M. (2013). Calorie restriction and cancer prevention: A mechanistic perspective. Cancer & Metabolism, 1(1), 10. https://doi.org/10.1186/2049-3002-1-10

    Article  Google Scholar 

  184. Galet, C., Gray, A., Said, J. W., Castor, B., Wan, J., Beltran, P. J., et al. (2013). Effects of calorie restriction and IGF-1 receptor blockade on the progression of 22Rv1 prostate cancer xenografts. International Journal of Molecular Sciences, 14(7), 13782–13795. https://doi.org/10.3390/ijms140713782

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  185. Freedland, S. J., Mavropoulos, J., Wang, A., Darshan, M., Demark-Wahnefried, W., Aronson, W. J., et al. (2008). Carbohydrate restriction, prostate cancer growth, and the insulin-like growth factor axis. Prostate, 68(1), 11–19. https://doi.org/10.1002/pros.20683

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  186. Allott, E. H., & Hursting, S. D. (2015). Obesity and cancer: Mechanistic insights from transdisciplinary studies. Endocrine-Related Cancer, 22(6), R365-386. https://doi.org/10.1530/ERC-15-0400

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  187. Dorling, J. L., van Vliet, S., Huffman, K. M., Kraus, W. E., Bhapkar, M., Pieper, C. F., et al. (2020). Effects of caloric restriction on human physiological, psychological, and behavioral outcomes: Highlights from CALERIE phase 2. Nutrition Reviews. https://doi.org/10.1093/nutrit/nuaa085

    Article  PubMed Central  Google Scholar 

  188. Harvie, M., Wright, C., Pegington, M., McMullan, D., Mitchell, E., Martin, B., et al. (2013). The effect of intermittent energy and carbohydrate restriction v. daily energy restriction on weight loss and metabolic disease risk markers in overweight women. British Journal of Nutrition, 110(8), 1534–1547. https://doi.org/10.1017/S0007114513000792

    Article  CAS  PubMed  Google Scholar 

  189. Harvie, M. N., Pegington, M., Mattson, M. P., Frystyk, J., Dillon, B., Evans, G., et al. (2011). The effects of intermittent or continuous energy restriction on weight loss and metabolic disease risk markers: A randomized trial in young overweight women. International Journal of Obesity, 35(5), 714–727. https://doi.org/10.1038/ijo.2010.171

    Article  CAS  PubMed  Google Scholar 

  190. Harvie, M. N., Sims, A. H., Pegington, M., Spence, K., Mitchell, A., Vaughan, A. A., et al. (2016). Intermittent energy restriction induces changes in breast gene expression and systemic metabolism. Breast Cancer Research, 18(1), 57. https://doi.org/10.1186/s13058-016-0714-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  191. Hamilton-Reeves, J. M. (2017-2021). Weight management aimed to reduce risk and improve outcomes from radical prostatectomy (WARRIOR). (ed.). NCT03261271

  192. Dimachkie, M. D., Bechtel, M. D., Robertson, H. L., Michel, C., Lee, E. K., Sullivan, D. K., et al. (2021). Exploration of biomarkers from a pilot weight management study for men undergoing radical prostatectomy. Urologic Oncology. https://doi.org/10.1016/j.urolonc.2021.01.010

    Article  PubMed  PubMed Central  Google Scholar 

  193. Hamilton-Reeves, J. M., Johnson, C. N., Hand, L. K., Bechtel, M. D., Robertson, H. L., Michel, C., et al. (2020). Feasibility of a weight management program tailored for overweight men with localized prostate cancer - A pilot study. Nutrition and Cancer, 1–16.https://doi.org/10.1080/01635581.2020.1856890

  194. Lin, D. W., Neuhouser, M. L., Schenk, J. M., Coleman, I. M., Hawley, S., Gifford, D., et al. (2007). Low-fat, low-glycemic load diet and gene expression in human prostate epithelium: A feasibility study of using cDNA microarrays to assess the response to dietary intervention in target tissues. Cancer Epidemiology, Biomarkers & Prevention, 16(10), 2150–2154.

    Article  CAS  Google Scholar 

  195. Henning, S. M., Galet, C., Gollapudi, K., Byrd, J. B., Liang, P., Li, Z., et al. (2018). Phase II prospective randomized trial of weight loss prior to radical prostatectomy. Prostate Cancer and Prostatic Diseases, 21(2), 212–220. https://doi.org/10.1038/s41391-017-0001-1

    Article  PubMed  Google Scholar 

  196. Demark-Wahnefried, W., Rais-Bahrami, S., Desmond, R. A., Gordetsky, J. B., Hunter, G. R., Yang, E. S., et al. (2017). Presurgical weight loss affects tumour traits and circulating biomarkers in men with prostate cancer. [Clinical Study]. British Journal of Cancer, 117, 1303. https://doi.org/10.1038/bjc.2017.303. https://www.nature.com/articles/bjc2017303#supplementary-information

  197. Fruge, A. D., Ptacek, T., Tsuruta, Y., Morrow, C. D., Azrad, M., Desmond, R. A., et al. (2018). Dietary changes impact the gut microbe composition in overweight and obese men with prostate cancer undergoing radical prostatectomy. Journal of the Academy of Nutrition and Dietetics, 118(4), 714–723 e711. https://doi.org/10.1016/j.jand.2016.10.017

  198. Wilson, R. L., Shannon, T., Calton, E., Galvao, D. A., Taaffe, D. R., Hart, N. H., et al. (2020). Efficacy of a weight loss program prior to robot assisted radical prostatectomy in overweight and obese men with prostate cancer. Surgical Oncology, 35, 182–188. https://doi.org/10.1016/j.suronc.2020.08.006

    Article  PubMed  Google Scholar 

  199. Varady, K. A. (2011). Intermittent versus daily calorie restriction: Which diet regimen is more effective for weight loss? Obesity Reviews, 12(7), e593-601. https://doi.org/10.1111/j.1467-789X.2011.00873.x

    Article  CAS  PubMed  Google Scholar 

  200. Ozkul, C., Yalinay, M., & Karakan, T. (2019). Islamic fasting leads to an increased abundance of Akkermansia muciniphila and Bacteroides fragilis group: A preliminary study on intermittent fasting. The Turkish Journal of Gastroenterology, 30(12), 1030–1035. https://doi.org/10.5152/tjg.2019.19185

    Article  PubMed  PubMed Central  Google Scholar 

  201. Guo, Y., Luo, S., Ye, Y., Yin, S., Fan, J., & Xia, M. (2020). Intermittent fasting improves cardiometabolic risk factors and alters gut microbiota in metabolic syndrome patients. Journal of Clinical Endocrinology and Metabolism. https://doi.org/10.1210/clinem/dgaa644

    Article  PubMed  PubMed Central  Google Scholar 

  202. Johnson, J. B., Summer, W., Cutler, R. G., Martin, B., Hyun, D. H., Dixit, V. D., et al. (2007). Alternate day calorie restriction improves clinical findings and reduces markers of oxidative stress and inflammation in overweight adults with moderate asthma. Free Radical Biology & Medicine, 42(5), 665–674. https://doi.org/10.1016/j.freeradbiomed.2006.12.005

    Article  CAS  Google Scholar 

  203. Schwingshackl, L., Zahringer, J., Nitschke, K., Torbahn, G., Lohner, S., Kuhn, T., et al. (2020). Impact of intermittent energy restriction on anthropometric outcomes and intermediate disease markers in patients with overweight and obesity: Systematic review and meta-analyses. Critical Reviews in Food Science and Nutrition, 1–12.https://doi.org/10.1080/10408398.2020.1757616

  204. Cioffi, I., Evangelista, A., Ponzo, V., Ciccone, G., Soldati, L., Santarpia, L., et al. (2018). Intermittent versus continuous energy restriction on weight loss and cardiometabolic outcomes: A systematic review and meta-analysis of randomized controlled trials. Journal of Translational Medicine, 16(1), 371. https://doi.org/10.1186/s12967-018-1748-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  205. Harris, L., Hamilton, S., Azevedo, L. B., Olajide, J., De Brun, C., Waller, G., et al. (2018). Intermittent fasting interventions for treatment of overweight and obesity in adults: A systematic review and meta-analysis. JBI Database of Systematic Reviews and Implementation Reports, 16(2), 507–547. https://doi.org/10.11124/JBISRIR-2016-003248

    Article  PubMed  Google Scholar 

  206. Farsijani, S., Payette, H., Morais, J. A., Shatenstein, B., Gaudreau, P., & Chevalier, S. (2017). Even mealtime distribution of protein intake is associated with greater muscle strength, but not with 3-y physical function decline, in free-living older adults: The Quebec longitudinal study on Nutrition as a Determinant of Successful Aging (NuAge study). American Journal of Clinical Nutrition, 106(1), 113–124. https://doi.org/10.3945/ajcn.116.146555

    Article  CAS  PubMed  Google Scholar 

  207. Halberg, N., Henriksen, M., Soderhamn, N., Stallknecht, B., Ploug, T., Schjerling, P., et al. (2005). Effect of intermittent fasting and refeeding on insulin action in healthy men. Journal of Applied Physiology (1985), 99(6), 2128–2136. https://doi.org/10.1152/japplphysiol.00683.2005

  208. Soeters, M. R., Sauerwein, H. P., Groener, J. E., Aerts, J. M., Ackermans, M. T., Glatz, J. F., et al. (2007). Gender-related differences in the metabolic response to fasting. Journal of Clinical Endocrinology and Metabolism, 92(9), 3646–3652. https://doi.org/10.1210/jc.2007-0552

    Article  CAS  PubMed  Google Scholar 

  209. Miller, K. N., Burhans, M. S., Clark, J. P., Howell, P. R., Polewski, M. A., DeMuth, T. M., et al. (2017). Aging and caloric restriction impact adipose tissue, adiponectin, and circulating lipids. Aging Cell, 16(3), 497–507. https://doi.org/10.1111/acel.12575

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  210. Linford, N. J., Beyer, R. P., Gollahon, K., Krajcik, R. A., Malloy, V. L., Demas, V., et al. (2007). Transcriptional response to aging and caloric restriction in heart and adipose tissue. Aging Cell, 6(5), 673–688. https://doi.org/10.1111/j.1474-9726.2007.00319.x

    Article  CAS  PubMed  Google Scholar 

  211. Nisoli, E., Tonello, C., Cardile, A., Cozzi, V., Bracale, R., Tedesco, L., et al. (2005). Calorie restriction promotes mitochondrial biogenesis by inducing the expression of eNOS. Science, 310(5746), 314–317. https://doi.org/10.1126/science.1117728

    Article  CAS  PubMed  Google Scholar 

  212. Okita, N., Hayashida, Y., Kojima, Y., Fukushima, M., Yuguchi, K., Mikami, K., et al. (2012). Differential responses of white adipose tissue and brown adipose tissue to caloric restriction in rats. Mechanisms of Ageing and Development, 133(5), 255–266. https://doi.org/10.1016/j.mad.2012.02.003

    Article  CAS  PubMed  Google Scholar 

  213. Giovannini, S., Carter, C. S., Leeuwenburgh, C., Flex, A., Biscetti, F., Morgan, D., et al. (2020). Effects of aging and life-long moderate calorie restriction on IL-15 signaling in the rat white adipose tissue. European Review for Medical and Pharmacological Sciences, 24(5), 2738–2749. https://doi.org/10.26355/eurrev_202003_20547

    Article  CAS  PubMed  Google Scholar 

  214. Kobayashi, M., Fujii, N., Narita, T., & Higami, Y. (2018). SREBP-1c-dependent metabolic remodeling of white adipose tissue by caloric restriction. International Journal of Molecular Sciences, 19(11). https://doi.org/10.3390/ijms19113335

  215. Fujii, N., Uta, S., Kobayashi, M., Sato, T., Okita, N., & Higami, Y. (2019). Impact of aging and caloric restriction on fibroblast growth factor 21 signaling in rat white adipose tissue. Experimental Gerontology, 118, 55–64. https://doi.org/10.1016/j.exger.2019.01.001

    Article  CAS  PubMed  Google Scholar 

  216. Richman, E. L., Kenfield, S. A., Stampfer, M. J., Paciorek, A., Carroll, P. R., & Chan, J. M. (2011). Physical activity after diagnosis and risk of prostate cancer progression: Data from the cancer of the prostate strategic urologic research endeavor. Cancer Research, 71(11), 3889–3895. https://doi.org/10.1158/0008-5472.CAN-10-3932

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  217. Kenfield, S. A., Stampfer, M. J., Giovannucci, E., & Chan, J. M. (2011). Physical activity and survival after prostate cancer diagnosis in the health professionals follow-up study. Journal of Clinical Oncology, 29(6), 726–732. https://doi.org/10.1200/JCO.2010.31.5226

    Article  PubMed  PubMed Central  Google Scholar 

  218. Bonn, S. E., Sjolander, A., Lagerros, Y. T., Wiklund, F., Stattin, P., Holmberg, E., et al. (2015). Physical activity and survival among men diagnosed with prostate cancer. Cancer Epidemiology, Biomarkers & Prevention, 24(1), 57–64. https://doi.org/10.1158/1055-9965.EPI-14-0707

    Article  CAS  Google Scholar 

  219. Gunnell, A. S., Joyce, S., Tomlin, S., Taaffe, D. R., Cormie, P., Newton, R. U., et al. (2017). Physical activity and survival among long-term cancer survivor and non-cancer cohorts. Frontiers in Public Health, 5, 19. https://doi.org/10.3389/fpubh.2017.00019

    Article  PubMed  PubMed Central  Google Scholar 

  220. McTiernan, A. (2008). Mechanisms linking physical activity with cancer. Nature Reviews Cancer, 8(3), 205–211. https://doi.org/10.1038/nrc2325

    Article  CAS  PubMed  Google Scholar 

  221. Winters-Stone, K. M., Wood, L. J., Stoyles, S., & Dieckmann, N. F. (2018). The effects of resistance exercise on biomarkers of breast cancer prognosis: A pooled analysis of three randomized trials. Cancer Epidemiology, Biomarkers & Prevention, 27(2), 146–153. https://doi.org/10.1158/1055-9965.Epi-17-0766

    Article  CAS  Google Scholar 

  222. Dai, J. Y., Wang, B., Wang, X., Cheng, A., Kolb, S., Stanford, J. L., et al. (2019). Vigorous physical activity is associated with lower risk of metastatic-lethal progression in prostate cancer and hypomethylation in the CRACR2A gene. Cancer Epidemiology, Biomarkers & Prevention, 28(2), 258–264. https://doi.org/10.1158/1055-9965.EPI-18-0622

    Article  CAS  Google Scholar 

  223. Kim, J. S., Galvao, D. A., Newton, R. U., Gray, E., & Taaffe, D. R. (2021). Exercise-induced myokines and their effect on prostate cancer. Nature Reviews. Urology, 18(9), 519–542. https://doi.org/10.1038/s41585-021-00476-y

    Article  CAS  PubMed  Google Scholar 

  224. Schmid, M., Martins, H. C., Schratt, G., Kropfl, J. M., & Spengler, C. M. (2021). MiRNA126 - RGS16 - CXCL12 cascade as a potential mechanism of acute exercise-induced precursor cell mobilization. Frontiers in Physiology, 12, 780666. https://doi.org/10.3389/fphys.2021.780666

    Article  PubMed  PubMed Central  Google Scholar 

  225. Zaldivar, F., Eliakim, A., Radom-Aizik, S., Leu, S. Y., & Cooper, D. M. (2007). The effect of brief exercise on circulating CD34+ stem cells in early and late pubertal boys. Pediatric Research, 61(4), 491–495. https://doi.org/10.1203/pdr.0b013e3180332d36

    Article  PubMed  Google Scholar 

  226. Chang, E., Paterno, J., Duscher, D., Maan, Z. N., Chen, J. S., Januszyk, M., et al. (2015). Exercise induces stromal cell-derived factor-1alpha-mediated release of endothelial progenitor cells with increased vasculogenic function. Plastic and Reconstructive Surgery, 135(2), 340e–350e. https://doi.org/10.1097/PRS.0000000000000917

    Article  CAS  PubMed  Google Scholar 

  227. Niemiro, G. M., Parel, J., Beals, J., van Vliet, S., Paluska, S. A., Moore, D. R., et al. (2017). Kinetics of circulating progenitor cell mobilization during submaximal exercise. Journal of Applied Physiology (1985), 122(3), 675–682. https://doi.org/10.1152/japplphysiol.00936.2016

  228. Niemiro, G. M., Allen, J. M., Mailing, L. J., Khan, N. A., Holscher, H. D., Woods, J. A., et al. (2018). Effects of endurance exercise training on inflammatory circulating progenitor cell content in lean and obese adults. Journal of Physiology, 596(14), 2811–2822. https://doi.org/10.1113/JP276023

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  229. Van Craenenbroeck, E. M., Beckers, P. J., Possemiers, N. M., Wuyts, K., Frederix, G., Hoymans, V. Y., et al. (2010). Exercise acutely reverses dysfunction of circulating angiogenic cells in chronic heart failure. European Heart Journal, 31(15), 1924–1934. https://doi.org/10.1093/eurheartj/ehq058

    Article  CAS  PubMed  Google Scholar 

  230. Van Craenenbroeck, E. M., Hoymans, V. Y., Beckers, P. J., Possemiers, N. M., Wuyts, K., Paelinck, B. P., et al. (2010). Exercise training improves function of circulating angiogenic cells in patients with chronic heart failure. Basic Research in Cardiology, 105(5), 665–676. https://doi.org/10.1007/s00395-010-0105-4

    Article  CAS  PubMed  Google Scholar 

  231. Ribeiro, F., Ribeiro, I. P., Goncalves, A. C., Alves, A. J., Melo, E., Fernandes, R., et al. (2017). Effects of resistance exercise on endothelial progenitor cell mobilization in women. Science and Reports, 7(1), 17880. https://doi.org/10.1038/s41598-017-18156-6

    Article  CAS  Google Scholar 

  232. Ross, M. D., Malone, E. M., Simpson, R., Cranston, I., Ingram, L., Wright, G. P., et al. (2018). Lower resting and exercise-induced circulating angiogenic progenitors and angiogenic T cells in older men. American Journal of Physiology. Heart and Circulatory Physiology, 314(3), H392–H402. https://doi.org/10.1152/ajpheart.00592.2017

    Article  CAS  PubMed  Google Scholar 

  233. Wedell-Neergaard, A. S., Lang Lehrskov, L., Christensen, R. H., Legaard, G. E., Dorph, E., Larsen, M. K., et al. (2019). Exercise-induced changes in visceral adipose tissue mass are regulated by IL-6 signaling: A randomized controlled trial. Cell Metabolism, 29(4), 844–855 e843. https://doi.org/10.1016/j.cmet.2018.12.007

  234. Khosravi, N., Stoner, L., Farajivafa, V., & Hanson, E. D. (2019). Exercise training, circulating cytokine levels and immune function in cancer survivors: A meta-analysis. Brain, Behavior, and Immunity, 81, 92–104. https://doi.org/10.1016/j.bbi.2019.08.187

    Article  CAS  PubMed  Google Scholar 

  235. Rocha-Rodrigues, S., Matos, A., Afonso, J., Mendes-Ferreira, M., Abade, E., Teixeira, E., et al. (2021). Skeletal muscle-adipose tissue-tumor axis: Molecular mechanisms linking exercise training in prostate cancer. International Journal of Molecular Sciences, 22(9). https://doi.org/10.3390/ijms22094469

  236. Idorn, M., & Thor Straten, P. (2018). Chemokine receptors and exercise to tackle the inadequacy of T cell homing to the tumor site. Cells, 7(8). https://doi.org/10.3390/cells7080108

  237. Bourke, L., Smith, D., Steed, L., Hooper, R., Carter, A., Catto, J., et al. (2016). Exercise for men with prostate cancer: A systematic review and meta-analysis. European Urology, 69(4), 693–703. https://doi.org/10.1016/j.eururo.2015.10.047

    Article  PubMed  Google Scholar 

  238. Andersen, M. F., Midtgaard, J., & Bjerre, E. D. (2022). Do patients with prostate cancer benefit from exercise interventions? A systematic review and meta-analysis. International Journal of Environmental Research and Public Health, 19(2). https://doi.org/10.3390/ijerph19020972

  239. Newton, R. U., Kenfield, S. A., Hart, N. H., Chan, J. M., Courneya, K. S., Catto, J., et al. (2018). Intense Exercise for Survival among Men with Metastatic Castrate-Resistant Prostate Cancer (INTERVAL-GAP4): A multicentre, randomised, controlled phase III study protocol. British Medical Journal Open, 8(5), e022899. https://doi.org/10.1136/bmjopen-2018-022899

    Article  Google Scholar 

  240. Kim, J. S., Taaffe, D. R., Galvao, D. A., Hart, N. H., Gray, E., Ryan, C. J., et al. (2022). Exercise in advanced prostate cancer elevates myokine levels and suppresses in-vitro cell growth. Prostate Cancer and Prostatic Diseases, 25(1), 86–92. https://doi.org/10.1038/s41391-022-00504-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  241. Ingram, D. K., Zhu, M., Mamczarz, J., Zou, S., Lane, M. A., Roth, G. S., et al. (2006). Calorie restriction mimetics: An emerging research field. Aging Cell, 5(2), 97–108. https://doi.org/10.1111/j.1474-9726.2006.00202.x

    Article  CAS  PubMed  Google Scholar 

  242. Salehi, B., Mishra, A. P., Nigam, M., Sener, B., Kilic, M., Sharifi-Rad, M., et al. (2018). Resveratrol: A double-edged sword in health benefits. Biomedicines, 6(3). https://doi.org/10.3390/biomedicines6030091

  243. Lagouge, M., Argmann, C., Gerhart-Hines, Z., Meziane, H., Lerin, C., Daussin, F., et al. (2006). Resveratrol improves mitochondrial function and protects against metabolic disease by activating SIRT1 and PGC-1alpha. Cell, 127(6), 1109–1122. https://doi.org/10.1016/j.cell.2006.11.013

    Article  CAS  PubMed  Google Scholar 

  244. Alberdi, G., Rodriguez, V. M., Miranda, J., Macarulla, M. T., Arias, N., Andres-Lacueva, C., et al. (2011). Changes in white adipose tissue metabolism induced by resveratrol in rats. Nutrition & Metabolism (London), 8(1), 29. https://doi.org/10.1186/1743-7075-8-29

    Article  CAS  Google Scholar 

  245. Cho, S. J., Jung, U. J., & Choi, M. S. (2012). Differential effects of low-dose resveratrol on adiposity and hepatic steatosis in diet-induced obese mice. British Journal of Nutrition, 108(12), 2166–2175. https://doi.org/10.1017/S0007114512000347

    Article  CAS  PubMed  Google Scholar 

  246. Qiao, Y., Sun, J., Xia, S., Tang, X., Shi, Y., & Le, G. (2014). Effects of resveratrol on gut microbiota and fat storage in a mouse model with high-fat-induced obesity. Food & Function, 5(6), 1241–1249. https://doi.org/10.1039/c3fo60630a

    Article  CAS  Google Scholar 

  247. Mendez-del Villar, M., Gonzalez-Ortiz, M., Martinez-Abundis, E., Perez-Rubio, K. G., & Lizarraga-Valdez, R. (2014). Effect of resveratrol administration on metabolic syndrome, insulin sensitivity, and insulin secretion. Metabolic Syndrome and Related Disorders, 12(10), 497–501. https://doi.org/10.1089/met.2014.0082

    Article  CAS  PubMed  Google Scholar 

  248. Arzola-Paniagua, M. A., Garcia-Salgado Lopez, E. R., Calvo-Vargas, C. G., & Guevara-Cruz, M. (2016). Efficacy of an orlistat-resveratrol combination for weight loss in subjects with obesity: A randomized controlled trial. Obesity (Silver Spring), 24(7), 1454–1463. https://doi.org/10.1002/oby.21523

    Article  CAS  Google Scholar 

  249. Faghihzadeh, F., Adibi, P., Rafiei, R., & Hekmatdoost, A. (2014). Resveratrol supplementation improves inflammatory biomarkers in patients with nonalcoholic fatty liver disease. Nutrition Research, 34(10), 837–843. https://doi.org/10.1016/j.nutres.2014.09.005

    Article  CAS  PubMed  Google Scholar 

  250. Most, J., Timmers, S., Warnke, I., Jocken, J. W., van Boekschoten, M., de Groot, P., et al. (2016). Combined epigallocatechin-3-gallate and resveratrol supplementation for 12 wk increases mitochondrial capacity and fat oxidation, but not insulin sensitivity, in obese humans: A randomized controlled trial. American Journal of Clinical Nutrition, 104(1), 215–227. https://doi.org/10.3945/ajcn.115.122937

    Article  CAS  PubMed  Google Scholar 

  251. Sheth, S., Jajoo, S., Kaur, T., Mukherjea, D., Sheehan, K., Rybak, L. P., et al. (2012). Resveratrol reduces prostate cancer growth and metastasis by inhibiting the Akt/MicroRNA-21 pathway. PLoS ONE, 7(12), e51655. https://doi.org/10.1371/journal.pone.0051655

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  252. Gill, C., Walsh, S. E., Morrissey, C., Fitzpatrick, J. M., & Watson, R. W. (2007). Resveratrol sensitizes androgen independent prostate cancer cells to death-receptor mediated apoptosis through multiple mechanisms. Prostate, 67(15), 1641–1653. https://doi.org/10.1002/pros.20653

    Article  CAS  PubMed  Google Scholar 

  253. Tan, L., Wang, W., He, G., Kuick, R. D., Gossner, G., Kueck, A. S., et al. (2016). Resveratrol inhibits ovarian tumor growth in an in vivo mouse model. Cancer, 122(5), 722–729. https://doi.org/10.1002/cncr.29793

    Article  CAS  PubMed  Google Scholar 

  254. Li, W., Ma, J., Ma, Q., Li, B., Han, L., Liu, J., et al. (2013). Resveratrol inhibits the epithelial-mesenchymal transition of pancreatic cancer cells via suppression of the PI-3K/Akt/NF-kappaB pathway. Current Medicinal Chemistry, 20(33), 4185–4194. https://doi.org/10.2174/09298673113209990251

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  255. Liang, Z. J., Wan, Y., Zhu, D. D., Wang, M. X., Jiang, H. M., Huang, D. L., et al. (2021). Resveratrol mediates the apoptosis of triple negative breast cancer cells by reducing POLD1 expression. Frontiers in Oncology, 11, 569295. https://doi.org/10.3389/fonc.2021.569295

    Article  PubMed  PubMed Central  Google Scholar 

  256. Harper, C. E., Patel, B. B., Wang, J., Arabshahi, A., Eltoum, I. A., & Lamartiniere, C. A. (2007). Resveratrol suppresses prostate cancer progression in transgenic mice. Carcinogenesis, 28(9), 1946–1953. https://doi.org/10.1093/carcin/bgm144

    Article  CAS  PubMed  Google Scholar 

  257. Wang, K., Chen, Z., Shi, J., Feng, Y., Yu, M., Sun, Y., et al. (2020). Resveratrol inhibits the tumor migration and invasion by upregulating TET1 and reducing TIMP2/3 methylation in prostate carcinoma cells. Prostate, 80(12), 977–985. https://doi.org/10.1002/pros.24029

    Article  CAS  PubMed  Google Scholar 

  258. Weisberg, S. P., Leibel, R., & Tortoriello, D. V. (2008). Dietary curcumin significantly improves obesity-associated inflammation and diabetes in mouse models of diabesity. Endocrinology, 149(7), 3549–3558. https://doi.org/10.1210/en.2008-0262

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  259. Shao, W., Yu, Z., Chiang, Y., Yang, Y., Chai, T., Foltz, W., et al. (2012). Curcumin prevents high fat diet induced insulin resistance and obesity via attenuating lipogenesis in liver and inflammatory pathway in adipocytes. PLoS ONE, 7(1), e28784. https://doi.org/10.1371/journal.pone.0028784

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  260. Ejaz, A., Wu, D., Kwan, P., & Meydani, M. (2009). Curcumin inhibits adipogenesis in 3T3-L1 adipocytes and angiogenesis and obesity in C57/BL mice. Journal of Nutrition, 139(5), 919–925. https://doi.org/10.3945/jn.108.100966

    Article  CAS  PubMed  Google Scholar 

  261. Aggarwal, B. B., Kumar, A., & Bharti, A. C. (2003). Anticancer potential of curcumin: Preclinical and clinical studies. Anticancer Research, 23(1A), 363–398.

    CAS  PubMed  Google Scholar 

  262. Vafadar, A., Shabaninejad, Z., Movahedpour, A., Fallahi, F., Taghavipour, M., Ghasemi, Y., et al. (2020). Quercetin and cancer: New insights into its therapeutic effects on ovarian cancer cells. Cell & Bioscience, 10, 32. https://doi.org/10.1186/s13578-020-00397-0

    Article  CAS  Google Scholar 

  263. Rivera, L., Moron, R., Sanchez, M., Zarzuelo, A., & Galisteo, M. (2008). Quercetin ameliorates metabolic syndrome and improves the inflammatory status in obese Zucker rats. Obesity (Silver Spring), 16(9), 2081–2087. https://doi.org/10.1038/oby.2008.315

    Article  CAS  Google Scholar 

  264. Stewart, L. K., Soileau, J. L., Ribnicky, D., Wang, Z. Q., Raskin, I., Poulev, A., et al. (2008). Quercetin transiently increases energy expenditure but persistently decreases circulating markers of inflammation in C57BL/6J mice fed a high-fat diet. Metabolism, 57(7 Suppl 1), S39-46. https://doi.org/10.1016/j.metabol.2008.03.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  265. Dong, J., Zhang, X., Zhang, L., Bian, H. X., Xu, N., Bao, B., et al. (2014). Quercetin reduces obesity-associated ATM infiltration and inflammation in mice: A mechanism including AMPKalpha1/SIRT1. Journal of Lipid Research, 55(3), 363–374. https://doi.org/10.1194/jlr.M038786

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  266. He, Y., Cao, X., Guo, P., Li, X., Shang, H., Liu, J., et al. (2017). Quercetin induces autophagy via FOXO1-dependent pathways and autophagy suppression enhances quercetin-induced apoptosis in PASMCs in hypoxia. Free Radical Biology & Medicine, 103, 165–176. https://doi.org/10.1016/j.freeradbiomed.2016.12.016

    Article  CAS  Google Scholar 

  267. Chondrogianni, N., Kapeta, S., Chinou, I., Vassilatou, K., Papassideri, I., & Gonos, E. S. (2010). Anti-ageing and rejuvenating effects of quercetin. Experimental Gerontology, 45(10), 763–771. https://doi.org/10.1016/j.exger.2010.07.001

    Article  CAS  PubMed  Google Scholar 

  268. Hoek-van den Hil, E. F., van Schothorst, E. M., van der Stelt, I., Swarts, H. J., Venema, D., Sailer, M., et al. (2014). Quercetin decreases high-fat diet induced body weight gain and accumulation of hepatic and circulating lipids in mice. Genes & Nutrition, 9(5), 418. https://doi.org/10.1007/s12263-014-0418-2

    Article  CAS  Google Scholar 

  269. Mahini, H., Ainsworth, G., & Garelnabi, M. (2014). Exercise and quercetin intake reduces body weight in c57bl6 mice. Atherosclerosis, 235(2), e109–e110.

    Article  Google Scholar 

  270. Pei, Y., Parks, J. S., & Kang, H. W. (2021). Quercetin alleviates high-fat diet-induced inflammation in brown adipose tissue. Journal of Functional Foods, 85.https://doi.org/10.1016/j.jff.2021.104614

  271. Lee, J. S., Cha, Y. J., Lee, K. H., & Yim, J. E. (2016). Onion peel extract reduces the percentage of body fat in overweight and obese subjects: A 12-week, randomized, double-blind, placebo-controlled study. Nursing Research & Practice, 10(2), 175–181. https://doi.org/10.4162/nrp.2016.10.2.175

    Article  CAS  Google Scholar 

  272. Pfeuffer, M., Auinger, A., Bley, U., Kraus-Stojanowic, I., Laue, C., Winkler, P., et al. (2013). Effect of quercetin on traits of the metabolic syndrome, endothelial function and inflammation in men with different APOE isoforms. Nutrition, Metabolism, and Cardiovascular Diseases, 23(5), 403–409. https://doi.org/10.1016/j.numecd.2011.08.010

    Article  CAS  PubMed  Google Scholar 

  273. Martin-Montalvo, A., Mercken, E. M., Mitchell, S. J., Palacios, H. H., Mote, P. L., Scheibye-Knudsen, M., et al. (2013). Metformin improves healthspan and lifespan in mice. Nature Communications, 4, 2192. https://doi.org/10.1038/ncomms3192

    Article  CAS  PubMed  Google Scholar 

  274. Anisimov, V. N., Berstein, L. M., Egormin, P. A., Piskunova, T. S., Popovich, I. G., Zabezhinski, M. A., et al. (2008). Metformin slows down aging and extends life span of female SHR mice. Cell Cycle, 7(17), 2769–2773. https://doi.org/10.4161/cc.7.17.6625

    Article  CAS  PubMed  Google Scholar 

  275. Saha, A., Blando, J., Tremmel, L., & DiGiovanni, J. (2015). Effect of metformin, rapamycin and their combination on growth and progression of prostate tumors in himyc mice. Cancer Prevention Research (Philadelphia, Pa.). https://doi.org/10.1158/1940-6207.CAPR-15-0014

    Article  Google Scholar 

  276. Goodwin, P. J., & Stambolic, V. (2011). Obesity and insulin resistance in breast cancer–chemoprevention strategies with a focus on metformin. Breast, 20(Suppl 3), S31-35. https://doi.org/10.1016/S0960-9776(11)70291-0

    Article  PubMed  Google Scholar 

  277. Berstein, L. M. (2012). Metformin in obesity, cancer and aging: Addressing controversies. Aging (Albany NY), 4(5), 320–329. https://doi.org/10.18632/aging.100455

    Article  CAS  Google Scholar 

  278. Harrison, D. E., Strong, R., Sharp, Z. D., Nelson, J. F., Astle, C. M., Flurkey, K., et al. (2009). Rapamycin fed late in life extends lifespan in genetically heterogeneous mice. Nature, 460(7253), 392–395. https://doi.org/10.1038/nature08221

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  279. Chang, G. R., Chiu, Y. S., Wu, Y. Y., Chen, W. Y., Liao, J. W., Chao, T. H., et al. (2009). Rapamycin protects against high fat diet-induced obesity in C57BL/6J mice. Journal of Pharmacological Sciences, 109(4), 496–503. https://doi.org/10.1254/jphs.08215FP

    Article  CAS  PubMed  Google Scholar 

  280. Checkley, L. A., Rho, O., Moore, T., Hursting, S., & DiGiovanni, J. (2011). Rapamycin is a potent inhibitor of skin tumor promotion by 12-O-tetradecanoylphorbol-13-acetate. Cancer Prevention Research (Philadelphia, Pa.), 4(7), 1011–1020. https://doi.org/10.1158/1940-6207.CAPR-10-0375

    Article  CAS  Google Scholar 

  281. Lee, D., Lee, J. H., Kim, B. H., Lee, S., Kim, D. W., & Kang, K. S. (2022). Phytochemical combination (p-synephrine, p-octopamine hydrochloride, and hispidulin) for improving obesity in obese mice induced by high-fat diet. Nutrients, 14(10). https://doi.org/10.3390/nu14102164

  282. Lodi, A., Saha, A., Lu, X., Wang, B., Sentandreu, E., Collins, M., et al. (2017). Combinatorial treatment with natural compounds in prostate cancer inhibits prostate tumor growth and leads to key modulations of cancer cell metabolism. NPJ Precision Oncology, 1.https://doi.org/10.1038/s41698-017-0024-z

  283. Daquinag, A. C., Dadbin, A., Snyder, B., Wang, X., Sahin, A., Ueno, N. T., et al. (2017). Non-glycanated decorin is a drug target on human adipose stromal cells. Molecular Therapy - Oncolytics, 6, 1–9.

    Article  CAS  Google Scholar 

  284. Daquinag, A. C., Tseng, C., Zhang, Y., Amaya-Manzanares, F., Florez, F., Dadbin, A., et al. (2016). Targeted pro-apoptotic peptides depleting adipose stromal cells inhibit tumor growth. Molecular Therapy, 1, 34–40. https://doi.org/10.1038/mt.2015.155

    Article  CAS  Google Scholar 

  285. Daquinag, A. C., Salameh, A., Zhang, Y., Tong, Q., & Kolonin, M. G. (2015). Depletion of white adipocyte progenitors induces beige adipocyte differentiation and suppresses obesity development. Cell Death & Diff., 22, 351–363. https://doi.org/10.1038/cdd.2014.148

    Article  CAS  Google Scholar 

  286. Zaidi, N., Lupien, L., Kuemmerle, N. B., Kinlaw, W. B., Swinnen, J. V., & Smans, K. (2013). Lipogenesis and lipolysis: The pathways exploited by the cancer cells to acquire fatty acids. Progress in Lipid Research, 52(4), 585–589. https://doi.org/10.1016/j.plipres.2013.08.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  287. Ros, S., Santos, C. R., Moco, S., Baenke, F., Kelly, G., Howell, M., et al. (2012). Functional metabolic screen identifies 6-phosphofructo-2-kinase/fructose-2,6-biphosphatase 4 as an important regulator of prostate cancer cell survival. Cancer Discovery, 2(4), 328–343. https://doi.org/10.1158/2159-8290.CD-11-0234

    Article  CAS  PubMed  Google Scholar 

  288. Kuemmerle, N. B., Rysman, E., Lombardo, P. S., Flanagan, A. J., Lipe, B. C., Wells, W. A., et al. (2011). Lipoprotein lipase links dietary fat to solid tumor cell proliferation. Molecular Cancer Therapeutics, 10(3), 427–436. https://doi.org/10.1158/1535-7163.MCT-10-0802

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  289. Domanska, U. M., Kruizinga, R. C., Nagengast, W. B., Timmer-Bosscha, H., Huls, G., de Vries, E. G., et al. (2013). A review on CXCR4/CXCL12 axis in oncology: No place to hide. European Journal of Cancer, 49(1), 219–230. https://doi.org/10.1016/j.ejca.2012.05.005

    Article  CAS  PubMed  Google Scholar 

  290. Zhao, H., Guo, L., Zhao, H., Zhao, J., Weng, H., & Zhao, B. (2015). CXCR4 over-expression and survival in cancer: A system review and meta-analysis. Oncotarget, 6(7), 5022–5040. https://doi.org/10.18632/oncotarget.3217

    Article  PubMed  Google Scholar 

  291. Darash-Yahana, M., Pikarsky, E., Abramovitch, R., Zeira, E., Pal, B., Karplus, R., et al. (2004). Role of high expression levels of CXCR4 in tumor growth, vascularization, and metastasis. The FASEB Journal, 18(11), 1240–1242. https://doi.org/10.1096/fj.03-0935fje

    Article  CAS  PubMed  Google Scholar 

  292. Cui, K., Zhao, W., Wang, C., Wang, A., Zhang, B., Zhou, W., et al. (2011). The CXCR4-CXCL12 pathway facilitates the progression of pancreatic cancer via induction of angiogenesis and lymphangiogenesis. [Research Support, Non-U.S. Gov’t]. Journal of Surgical Research, 171(1), 143–150. https://doi.org/10.1016/j.jss.2010.03.001

  293. Teicher, B. A., & Fricker, S. P. (2010). CXCL12 (SDF-1)/CXCR4 pathway in cancer. Clinical Cancer Research, 16(11), 2927–2931. https://doi.org/10.1158/1078-0432.CCR-09-2329

    Article  CAS  PubMed  Google Scholar 

  294. Scala, S. (2015). Molecular pathways: Targeting the CXCR4-CXCL12 axis–Untapped potential in the tumor microenvironment. Clinical Cancer Research, 21(19), 4278–4285. https://doi.org/10.1158/1078-0432.CCR-14-0914

    Article  CAS  PubMed  Google Scholar 

  295. Bleul, C. C., Fuhlbrigge, R. C., Casasnovas, J. M., Aiuti, A., & Springer, T. A. (1996). A highly efficacious lymphocyte chemoattractant, stromal cell-derived factor 1 (SDF-1). Journal of Experimental Medicine, 184(3), 1101–1109. https://doi.org/10.1084/jem.184.3.1101

    Article  CAS  PubMed  Google Scholar 

  296. Hernandez, L., Magalhaes, M. A., Coniglio, S. J., Condeelis, J. S., & Segall, J. E. (2011). Opposing roles of CXCR4 and CXCR7 in breast cancer metastasis. Breast Cancer Research, 13(6), R128. https://doi.org/10.1186/bcr3074

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  297. Ahn, S., Saha, A., Kolonin, M. G., J. DiGiovanni, J. (2021). Signaling via both CXCR4 and CXCR7 in prostate cancer cells promotes tumor progression and underlies obesity-associated epithelial-mesenchymal transition. In revision

Download references

Funding

This work was supported in part by NIH grants R01 CA196259 and R01 CA228404 (to JD). Jill Hamilton-Reeves was supported by a Research Scholar Grant, RSG-17–050-01—NEC, from the American Cancer Society.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John DiGiovanni.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saha, A., Hamilton-Reeves, J. & DiGiovanni, J. White adipose tissue-derived factors and prostate cancer progression: mechanisms and targets for interventions. Cancer Metastasis Rev 41, 649–671 (2022). https://doi.org/10.1007/s10555-022-10056-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10555-022-10056-0

Keywords

Navigation