Skip to main content

Advertisement

Log in

15-Lipoxygenase-1 as a tumor suppressor gene in colon cancer: is the verdict in?

  • Published:
Cancer and Metastasis Reviews Aims and scope Submit manuscript

Abstract

15-Lipoxygenase-1 (15-LOX-1) is an inducible and highly regulated enzyme in normal human cells that plays a key role in the production of lipid signaling mediators, such as 13-hydroxyoctadecadienoic acid (13-HODE) from linoleic acid. 15-LOX-1 significantly contributes to the resolution of inflammation and to the terminal differentiation of normal cells. 15-LOX-1 is downregulated in human colorectal polyps and cancers. Emerging data support a tumor suppressor role for 15-LOX-1, especially in colon cancer. These data indicate that 15-LOX-1 promotes various anti-tumorigenic events, including cell differentiation and apoptosis, and inhibits chronic inflammation, angiogenesis, and metastasis. The transcriptional repression of 15-LOX-1 in colon cancer cells is complex and involves multiple mechanisms (e.g., histone methylation, transcriptional repressor binding). Re-expression of 15-LOX-1 in colon cancer cells can function as an important therapeutic mechanism and could be further exploited to develop novel treatment approaches for this common cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Kim, Y. S., & Milner, J. A. (2007). Dietary modulation of colon cancer risk. Journal of Nutrition, 137, 2576S–2579.

    PubMed  Google Scholar 

  2. Chapkin, R. S., McMurray, D. N., & Lupton, J. R. (2007). Colon cancer, fatty acids and anti-inflammatory compounds. Current Opinion in Gastroenterology, 23, 48–54.

    PubMed  CAS  Google Scholar 

  3. Woutersen, R. A., Appel, M. J., van Garderen-Hoetmer, A., & Wijnands, M. V. W. (1999). Dietary fat and carcinogenesis. Mutation Research, Genetic Toxicology and Environmental Mutagenesis, 443, 111–127.

    CAS  Google Scholar 

  4. Murff, H. J., Shu, X.-O., Li, H., et al. (2009). A prospective study of dietary polyunsaturated fatty acids and colorectal cancer risk in Chinese women. Cancer Epidemiology, Biomarkers & Prevention, 18, 2283–2291.

    CAS  Google Scholar 

  5. Brash, A. R. (1999). Lipoxygenases: Occurrence, functions, catalysis, and acquisition of substrate. Journal of Biological Chemistry, 274, 23679–23682.

    PubMed  CAS  Google Scholar 

  6. Shureiqi, I., Chen, D., Day, R. S., et al. (2010). Profiling lipoxygenase metabolism in specific steps of colorectal tumorigenesis. Cancer Prevention Research (Philadelphia, Pa.), 3, 829–838.

    CAS  Google Scholar 

  7. Baer, A. N., Costello, P. B., & Green, F. A. (1991). In vivo activation of an omega-6 oxygenase in human skin. Biochemical and Biophysical Research Communications, 180, 98–104.

    PubMed  CAS  Google Scholar 

  8. Sigal, E., Grunberger, D., Highland, E., Gross, C., Dixon, R. A., & Craik, C. S. (1990). Expression of cloned human reticulocyte 15-lipoxygenase and immunological evidence that 15-lipoxygenases of different cell types are related. Journal of Biological Chemistry, 265, 5113–5120.

    PubMed  CAS  Google Scholar 

  9. Brash, A. R., Boeglin, W. E., & Chang, M. S. (1997). Discovery of a second 15S-lipoxygenase in humans. Proceedings of the National Academy of Sciences of the United States of America, 94, 6148–6152.

    PubMed  CAS  Google Scholar 

  10. Shureiqi, I., & Lippman, S. M. (2001). Lipoxygenase modulation to reverse carcinogenesis. Cancer Research, 61, 6307–6312.

    PubMed  CAS  Google Scholar 

  11. Fürstenberger, G., Krieg, P., Müller-Decker, K., & Habenicht, A. J. R. (2006). What are cyclooxygenases and lipoxygenases doing in the driver’s seat of carcinogenesis? International Journal of Cancer, 119, 2247–2254.

    Google Scholar 

  12. Pidgeon, G., Lysaght, J., Krishnamoorthy, S., et al. (2007). Lipoxygenase metabolism: Roles in tumor progression and survival. Cancer and Metastasis Reviews, 26, 503–524.

    PubMed  CAS  Google Scholar 

  13. Serhan, C. N. (2005). Lipoxins and aspirin-triggered 15-epi-lipoxins are the first lipid mediators of endogenous anti-inflammation and resolution. Prostaglandins, Leukotrienes, and Essential Fatty Acids, 73, 141–162.

    PubMed  CAS  Google Scholar 

  14. Serhan, C. N. (2007). Resolution phase of inflammation: Novel endogenous anti-inflammatory and proresolving lipid mediators and pathways. Annual Review of Immunology, 25, 101–137.

    PubMed  CAS  Google Scholar 

  15. Hong, S., Gronert, K., Devchand, P. R., Moussignac, R.-L., & Serhan, C. N. (2003). Novel docosatrienes and 17S-resolvins generated from docosahexaenoic acid in murine brain, human blood, and glial cells. Autacoids in anti-inflammation. Journal of Biological Chemistry, 278, 14677–14687.

    PubMed  CAS  Google Scholar 

  16. Merched, A. J., Ko, K., Gotlinger, K. H., Serhan, C. N., & Chan, L. (2008). Atherosclerosis: Evidence for impairment of resolution of vascular inflammation governed by specific lipid mediators. The FASEB Journal, 22, 3595–3606.

    PubMed  CAS  Google Scholar 

  17. Balkwill, F., Charles, K. A., & Mantovani, A. (2005). Smoldering and polarized inflammation in the initiation and promotion of malignant disease. Cancer Cell, 7, 211–217.

    PubMed  CAS  Google Scholar 

  18. Clevers, H. (2004). At the crossroads of inflammation and cancer. Cell, 118, 671–674.

    PubMed  CAS  Google Scholar 

  19. Serhan, C. N., Jain, A., Marleau, S., et al. (2003). Reduced inflammation and tissue damage in transgenic rabbits overexpressing 15-lipoxygenase and endogenous anti-inflammatory lipid mediators. Journal of Immunology, 171, 6856–6865.

    CAS  Google Scholar 

  20. Munger, K. A., Montero, A., Fukunaga, M., et al. (1999). Transfection of rat kidney with human 15-lipoxygenase suppresses inflammation and preserves function in experimental glomerulonephritis. Proceedings of the National Academy of Sciences, 96, 13375–13380.

    CAS  Google Scholar 

  21. Mangino, M. J., Brounts, L., Harms, B., & Heise, C. (2006). Lipoxin biosynthesis in inflammatory bowel disease. Prostaglandins & Other Lipid Mediators, 79, 84–92.

    CAS  Google Scholar 

  22. Ligumsky, M., Simon, P. L., Karmeli, F., & Rachmilewitz, D. (1990). Role of interleukin 1 in inflammatory bowel disease—Enhanced production during active disease. Gut, 31, 686–689.

    PubMed  CAS  Google Scholar 

  23. Zuo, X., Wu, Y., Morris, J. S., et al. (2006). Oxidative metabolism of linoleic acid modulates PPAR-beta/delta suppression of PPAR-gamma activity. Oncogene, 25, 1225–1241.

    PubMed  CAS  Google Scholar 

  24. Sasaki, T., Fujii, K., Yoshida, K., et al. (2006). Peritoneal metastasis inhibition by linoleic acid with activation of PPARγ in human gastrointestinal cancer cells. Virchows Archiv, 448, 422–427.

    PubMed  CAS  Google Scholar 

  25. Ricote, M., Li, A. C., Willson, T. M., Kelly, C. J., & Glass, C. K. (1998). The peroxisome proliferator-activated receptor-[gamma] is a negative regulator of macrophage activation. Nature, 391, 79–82.

    PubMed  CAS  Google Scholar 

  26. Su, C. G., Wen, X., Bailey, S. T., et al. (1999). A novel therapy for colitis utilizing PPAR-gamma ligands to inhibit the epithelial inflammatory response. Journal of Clinical Investigation, 104, 383–389.

    PubMed  CAS  Google Scholar 

  27. Tanaka, T., Kohno, H., S-i, Y., et al. (2001). Ligands for peroxisome proliferator-activated receptors {alpha} and {gamma} inhibit chemically induced colitis and formation of aberrant crypt foci in rats. Cancer Research, 61, 2424–2428.

    PubMed  CAS  Google Scholar 

  28. Dubuquoy, L., Rousseaux, C., Thuru, X., et al. (2006). PPARgamma as a new therapeutic target in inflammatory bowel diseases. Gut, 55, 1341–1349.

    PubMed  CAS  Google Scholar 

  29. Kuhn, H., & O’Donnell, V. B. (2006). Inflammation and immune regulation by 12/15-lipoxygenases. Progress in Lipid Research, 45, 334–356.

    PubMed  Google Scholar 

  30. Levy, B. D., Clish, C. B., Schmidt, B., Gronert, K., & Serhan, C. N. (2001). Lipid mediator class switching during acute inflammation: Signals in resolution. Nature Immunology, 2, 612–619.

    PubMed  CAS  Google Scholar 

  31. Ariel, A., Li, P. L., Wang, W., et al. (2005). The docosatriene protectin D1 is produced by TH2 skewing and promotes human T cell apoptosis via lipid raft clustering. Journal of Biological Chemistry, 280, 43079–43086.

    PubMed  CAS  Google Scholar 

  32. Hudert, C. A., Weylandt, K. H., Lu, Y., et al. (2006). Transgenic mice rich in endogenous omega-3 fatty acids are protected from colitis. Proceedings of the National Academy of Sciences of the United States of America, 103, 11276–11281.

    PubMed  CAS  Google Scholar 

  33. Schewe, T., Halangk, W., Hiebsch, C., & Rapoport, S. (1977). Degradation of mitochondria by cytosolic factors in reticulocytes. Acta Biologica et Medica Germanica, 36, 563–572.

    PubMed  CAS  Google Scholar 

  34. Kuhn, H., & Brash, A. R. (1990). Occurrence of lipoxygenase products in membranes of rabbit reticulocytes. Evidence for a role of the reticulocyte lipoxygenase in the maturation of red cells. Journal of Biological Chemistry, 265, 1454–1458.

    PubMed  CAS  Google Scholar 

  35. van Leyen, K., Duvoisin, R. M., Engelhardt, H., & Wiedmann, M. (1998). A function for lipoxygenase in programmed organelle degradation. Nature, 395, 392–395.

    PubMed  Google Scholar 

  36. Grullich, C., Duvoisin, R. M., Wiedmann, M., & van Leyen, K. (2001). Inhibition of 15-lipoxygenase leads to delayed organelle degradation in the reticulocyte. FEBS Letters, 489, 51–54.

    PubMed  CAS  Google Scholar 

  37. Kim, K.-S., Chun, H.-S., Yoon, J.-H., Lee, J. G., Lee, J.-H., & Yoo, J.-B. (2005). Expression of 15-lipoxygenase-1 in human nasal epithelium: Its implication in mucociliary differentiation. Prostaglandins, Leukotrienes, and Essential Fatty Acids, 73, 77–83.

    PubMed  CAS  Google Scholar 

  38. Hill, E. M., Eling, T., & Nettesheim, P. (1998). Changes in expression of 15-lipoxygenase and prostaglandin-H synthase during differentiation of human tracheobronchial epithelial cells. American Journal of Respiratory Cell and Molecular Biology, 18, 662–669.

    PubMed  CAS  Google Scholar 

  39. Leszczyniecka, M., Roberts, T., Dent, P., Grant, S., & Fisher, P. B. (2001). Differentiation therapy of human cancer: Basic science and clinical applications. Pharmacology and Therapeutics, 90, 105–156.

    PubMed  CAS  Google Scholar 

  40. Jimenez, J. J., & Yunis, A. A. (1987). Tumor cell rejection through terminal cell differentiation. Science, 238, 1278–1280.

    PubMed  CAS  Google Scholar 

  41. Wicha, M. S., Liu, S., & Dontu, G. (2006). Cancer stem cells: An old idea—A paradigm shift. Cancer Research, 66, 1883–1890.

    PubMed  CAS  Google Scholar 

  42. Mueller, E., Sarraf, P., Tontonoz, P., et al. (1998). Terminal differentiation of human breast cancer through PPAR[gamma]. Molecular Cell, 1, 465–470.

    PubMed  CAS  Google Scholar 

  43. Huang, F., Adelman, J., Jiang, H., Goldstein, N. I., & Fisher, P. B. (1999). Identification and temporal expression pattern of genes modulated during irreversible growth arrest and terminal differentiation in human melanoma cells. Oncogene, 18, 3546–3552.

    PubMed  CAS  Google Scholar 

  44. Zelent, A., Petrie, K., Chen, Z., et al. (2005). Molecular target-based treatment of human cancer: Summary of the 10th International Conference on Differentiation Therapy. Cancer Research, 65, 1117–1123.

    PubMed  CAS  Google Scholar 

  45. Sung, M. W., & Waxman, S. (2007). Combination of cytotoxic-differentiation therapy with 5-fluorouracil and phenylbutyrate in patients with advanced colorectal cancer. Anticancer Research, 27, 995–1001.

    PubMed  CAS  Google Scholar 

  46. Glasgow, W. C., & Eling, T. E. (1990). Epidermal growth factor stimulates linoleic acid metabolism in BALB/c 3T3 fibroblast. Molecular Pharmacology, 38, 503–510.

    PubMed  CAS  Google Scholar 

  47. Glasgow, W. C., Afshari, C. A., Barrett, J. C., & Eling, T. E. (1992). Modulation of the epidermal growth factor mitogenic response by metabolites of linoleic and arachidonic acid in Syrian hamster embryo fibroblasts. Differential effects in tumor suppressor gene (+) and (−) phenotypes. Journal of Biological Chemistry, 267, 10771–10779.

    PubMed  CAS  Google Scholar 

  48. Reddy, N., Everhart, A., Eling, T., & Glasgow, W. (1997). Characterization of 15-lipoxygenase in human breast carcinoma BT-20 cells: Stimulation of 13-HODE formation by TGFα/EGF. Biochemical and Biophysical Research Communications, 231, 111–116.

    PubMed  CAS  Google Scholar 

  49. Glasgow, W. C., & Everhart, A. L. (1997). The role of linoleic acid metabolism in the proliferative response of cells overexpressing the erbB-2/HER2 oncogene. Advances in Experimental Medicine and Biology, 407, 393–397.

    PubMed  CAS  Google Scholar 

  50. Bronstein, J. C., & Bull, A. W. (1993). The correlation between 13-hydroxyoctadecadienoate dehydrogenase (13-HODE dehydrogenase) and intestinal cell differentiation. Prostaglandins, 46, 387–395.

    PubMed  CAS  Google Scholar 

  51. Ikawa, H., Kamitani, H., Calvo, B., Foley, J., & Eling, T. (1999). Expression of 15-lipoxygenase-1 in human colorectal cancer. Cancer Research, 59, 360–366.

    PubMed  CAS  Google Scholar 

  52. Kamitani, H., Geller, M., & Eling, T. (1998). Expression of 15-lipoxygenase by human colorectal carcinoma Caco-2 cells during apoptosis and cell differentiation. Journal of Biological Chemistry, 273, 21569–21577.

    PubMed  CAS  Google Scholar 

  53. Kamitani, H., Taniura, S., Ikawa, H., Watanabe, T., Kelavkar, U. P., & Eling, T. E. (2001). Expression of 15-lipoxygenase-1 is regulated by histone acetylation in human colorectal carcinoma. Carcinogenesis, 22, 187–191.

    PubMed  CAS  Google Scholar 

  54. Kawajiri, H., Hsi, L. C., Kamitani, H., et al. (2002). Arachidonic and linoleic acid metabolism in mouse intestinal tissue: Evidence for novel lipoxygenase activity. Archives of Biochemistry and Biophysics, 398, 51–60.

    PubMed  CAS  Google Scholar 

  55. Shureiqi, I., Wojno, K. J., Poore, J. A., et al. (1999). Decreased 13-S-hydroxyoctadecadienoic acid levels and 15-lipoxygenase-1 expression in human colon cancers. Carcinogenesis, 20, 1985–1995.

    PubMed  CAS  Google Scholar 

  56. Bull, A. W., Earls, S. M., & Blackburn, M. L. (1993). Regulation of the induction of ornithine decaroxylase in short-term rat colon organ culture by dexamethasone and 13-hydroxyoctadecadienoic acid (13-HODE). Life Sciences, 53, 337–385.

    Google Scholar 

  57. Miller, C. C., & Ziboh, V. A. (1990). Induction of epidermal hyperproliferation by topical n-3 polyunsaturated fatty acids on guinea pig skin linked to decrease levels of 13-hydroxyocatdecadienoic acid (13-HODE). The Journal of Investigative Dermatology, 94, 354–358.

    Google Scholar 

  58. Sandstrom, P. A., Pardi, D., Tebbey, P. W., et al. (1995). Lipid hydroperoxide-induced apoptosis: Lack of inhibition by Bcl-2 over-expression. FEBS Letters, 365, 66–70.

    PubMed  CAS  Google Scholar 

  59. Nixon, J. B., Kim, K. S., Lamb, P. W., Bottone, F. G., & Eling, T. E. (2004). 15-Lipoxygenase-1 has anti-tumorigenic effects in colorectal cancer. Prostaglandins, Leukotrienes, and Essential Fatty Acids, 70, 7–15.

    PubMed  CAS  Google Scholar 

  60. Yuri, M., Sasahira, T., Nakai, K., Ishimaru, S., Ohmori, H., & Kuniyasu, H. (2007). Reversal of expression of 15-lipoxygenase-1 to cyclooxygenase-2 is associated with development of colonic cancer. Histopathology, 51, 520–527.

    PubMed  CAS  Google Scholar 

  61. Heslin, M. J., Hawkins, A., Boedefeld, W., et al. (2005). Tumor-associated down-regulation of 15-lipoxygenase-1 is reversed by celecoxib in colorectal cancer. Annals of Surgery, 241, 941–946. discussion 946–947.

    PubMed  Google Scholar 

  62. Vogelstein, B., Fearon, E. R., Hamilton, S. R., et al. (1988). Genetic alterations during colorectal-tumor development. The New England Journal of Medicine, 319, 525–532.

    PubMed  CAS  Google Scholar 

  63. Shureiqi, I., Wu, Y., Chen, D., et al. (2005). The critical role of 15-lipoxygenase-1 in colorectal epithelial cell terminal differentiation and tumorigenesis. Cancer Research, 65, 11486–11492.

    PubMed  CAS  Google Scholar 

  64. Shureiqi, I., Jiang, W., Zuo, X., et al. (2003). The 15-lipoxygenase-1 product 13-S-hydroxyoctadecadienoic acid down-regulates PPAR-delta to induce apoptosis in colorectal cancer cells. Proceedings of the National Academy of Sciences of the United States of America, 100, 9968–9973.

    PubMed  CAS  Google Scholar 

  65. Nixon, J. B., Kamitani, H., Baek, S. J., & Eling, T. E. (2003). Evaluation of eicosanoids and NSAIDs as PPARgamma ligands in colorectal carcinoma cells. Prostaglandins, Leukotrienes, and Essential Fatty Acids, 68, 323–330.

    PubMed  CAS  Google Scholar 

  66. Jonkers, J., & Berns, A. (2002). Conditional mouse models of sporadic cancer. Nature Reviews. Cancer, 2, 251–265.

    PubMed  CAS  Google Scholar 

  67. Muller, K., Siebert, M., Heidt, M., Marks, F., Krieg, P., & Furstenberger, G. (2002). Modulation of epidermal tumor development caused by targeted overexpression of epidermis-type 12S-lipoxygenase. Cancer Research, 62, 4610–4616.

    PubMed  CAS  Google Scholar 

  68. Hanahan, D., & Weinberg, R. A. (2000). The hallmarks of cancer. Cell, 100, 57–70.

    PubMed  CAS  Google Scholar 

  69. Viita, H., Markkanen, J., Eriksson, E., et al. (2008). 15-Lipoxygenase-1 prevents vascular endothelial growth factor A- and placental growth factor-induced angiogenic effects in rabbit skeletal muscles via reduction in growth factor mRNA levels, NO bioactivity, and downregulation of VEGF receptor 2 expression. Circulation Research, 102, 177–184.

    PubMed  CAS  Google Scholar 

  70. Mochizuki, N., & Kwon, Y.-G. (2008). 15-Lipoxygenase-1 in the vasculature: Expanding roles in angiogenesis. Circulation Research, 102, 143–145.

    PubMed  CAS  Google Scholar 

  71. Kelavkar, U. P., Nixon, J. B., Cohen, C., Dillehay, D., Eling, T. E., & Badr, K. F. (2001). Overexpression of 15-lipoxygenase-1 in PC-3 human prostate cancer cells increases tumorigenesis. Carcinogenesis, 22, 1765–1773.

    PubMed  CAS  Google Scholar 

  72. Grossi, M. I., Fitzgerald, A. L., Umbrager, K. K. N., Diglio, A. C. A., Taylor, D. J., & Honn, V. K. (1989). Bidirectional control of membrane expression and/or activation of the tumor cell IRGPIIB/IIIa receptors and tumor cell adhesion by lipoxygenase products of arachidonic acid and linoleic acid. Cancer Research, 49, 1029–1037.

    PubMed  CAS  Google Scholar 

  73. Bastida, E., Almirall, L., Ordinas, A., et al. (1991). Effects of endothelial cell treatment on 13-HODE and prostacyclin synthesis and its correlation with tumor cell-vascular endothelial cell adhesion. Invasion & Metastasis, 11, 273–280.

    CAS  Google Scholar 

  74. Bertomeu, M. C., Gallo, S., Lauri, D., et al. (1993). Interleukin 1-induced cancer cell/endothelial cell adhesion in vitro and its relationship to metastasis in vivo: Role of vessel wall 13-HODE synthesis and integrin expression. Clinical & Experimental Metastasis, 11, 243–250.

    CAS  Google Scholar 

  75. Harats, D., Ben-Shushan, D., Cohen, H., et al. (2005). Inhibition of carcinogenesis in transgenic mouse models over-expressing 15-lipoxygenase in the vascular wall under the control of murine preproendothelin-1 promoter. Cancer Letters, 229, 127–134.

    PubMed  CAS  Google Scholar 

  76. Gupta, G. P., & Massagué, J. (2006). Cancer metastasis: Building a framework. Cell, 127, 679–695.

    PubMed  CAS  Google Scholar 

  77. Çimen, I., Tunçay, S., & Banerjee, S. (2009). 15-Lipoxygenase-1 expression suppresses the invasive properties of colorectal carcinoma cell lines HCT-116 and HT-29. Cancer Science, 100, 2283–2291.

    PubMed  Google Scholar 

  78. Liu, H., Zang, C., Fenner, M. H., Possinger, K., & Elstner, E. (2003). PPARgamma ligands and ATRA inhibit the invasion of human breast cancer cells in vitro. Breast Cancer Research and Treatment, 79, 63–74.

    PubMed  CAS  Google Scholar 

  79. Yoshizumi, T., Ohta, T., Ninomiya, I., et al. (2004). Thiazolidinedione, a peroxisome proliferator-activated receptor-gamma ligand, inhibits growth and metastasis of HT-29 human colon cancer cells through differentiation-promoting effects. International Journal of Oncology, 25, 631–639.

    PubMed  CAS  Google Scholar 

  80. Bren-Mattison, Y., Van Putten, V., Chan, D., Winn, R., Geraci, M. W., & Nemenoff, R. A. (2005). Peroxisome proliferator-activated receptor-gamma (PPAR(gamma)) inhibits tumorigenesis by reversing the undifferentiated phenotype of metastatic non-small-cell lung cancer cells (NSCLC). Oncogene, 24, 1412–1422.

    PubMed  CAS  Google Scholar 

  81. Terashita, Y., Sasaki, H., Haruki, N., et al. (2002). Decreased peroxisome proliferator-activated receptor gamma gene expression is correlated with poor prognosis in patients with esophageal cancer. Japanese Journal of Clinical Oncology, 32, 238–243.

    PubMed  Google Scholar 

  82. Hawk, E. T., & Levin, B. (2005). Colorectal cancer prevention. Journal of Clinical Oncology, 23, 378–391.

    PubMed  Google Scholar 

  83. Shureiqi, I., Chen, D., Lee, J. J., et al. (2000). 15-LOX-1: A novel molecular target of nonsteroidal anti-inflammatory drug-induced apoptosis in colorectal cancer cells. Journal of the National Cancer Institute, 92, 1136–1142.

    PubMed  CAS  Google Scholar 

  84. Shureiqi, I., Chen, D., Lotan, R., et al. (2000). 15-Lipoxygenase-1 mediates nonsteroidal anti-inflammatory drug-induced apoptosis independently of cyclooxygenase-2 in colon cancer cells. Cancer Research 60, 6846–6850.

    PubMed  CAS  Google Scholar 

  85. Deguchi, A., Xing, S. W., Shureiqi, I., et al. (2005). Activation of protein kinase G up-regulates expression of 15-lipoxygenase-1 in human colon cancer cells. Cancer Research, 65, 8442–8447.

    PubMed  CAS  Google Scholar 

  86. Shureiqi, I., Jiang, W., Fischer, S. M., et al. (2002). GATA-6 transcriptional regulation of 15-lipoxygenase-1 during NSAID-induced apoptosis in colorectal cancer cells. Cancer Research, 62, 1178–1183.

    PubMed  CAS  Google Scholar 

  87. Dokmanovic, M., Clarke, C., & Marks, P. A. (2007). Histone deacetylase inhibitors: Overview and perspectives. Molecular Cancer Research, 5, 981–989.

    PubMed  CAS  Google Scholar 

  88. Mariadason, J. M. (2008). HDACs and HDAC inhibitors in colon cancer. Epigenetics, 3, 28–37.

    PubMed  Google Scholar 

  89. Federico, M., & Bagella, L. (2011). Histone deacetylase inhibitors in the treatment of hematological malignancies and solid tumors. Journal of Biomedicine and Biotechnology, 2011, 475641.

    PubMed  Google Scholar 

  90. Shureiqi, I., Zuo, X., Broaddus, R., et al. (2007). The transcription factor GATA-6 is overexpressed in vivo and contributes to silencing 15-LOX-1 in vitro in human colon cancer. The FASEB Journal, 21, 743–753.

    PubMed  CAS  Google Scholar 

  91. Zuo, X., Morris, J. S., Broaddus, R., & Shureiqi, I. (2009). 15-LOX-1 transcription suppression through the NuRD complex in colon cancer cells. Oncogene, 28, 1496–1505.

    PubMed  CAS  Google Scholar 

  92. Shankaranarayanan, P., Chaitidis, P., Kuhn, H., & Nigam, S. (2001). Acetylation by histone acetyltransferase CREB-binding protein/p300 of STAT6 is required for transcriptional activation of the 15-lipoxygenase-1 gene. Journal of Biological Chemistry, 276, 42753–42760.

    PubMed  CAS  Google Scholar 

  93. Hsi, L. C., Xi, X., Lotan, R., Shureiqi, I., & Lippman, S. M. (2004). The histone deacetylase inhibitor suberoylanilide hydroxamic acid induces apoptosis via induction of 15-lipoxygenase-1 in colorectal cancer cells. Cancer Research, 64, 8778–8781.

    PubMed  CAS  Google Scholar 

  94. Zuo, X., Shen, L., Issa, J.-P., et al. (2008). 15-Lipoxygenase-1 transcriptional silencing by DNA methyltransferase-1 independently of DNA methylation. The FASEB Journal, 22, 1981–1992.

    Google Scholar 

  95. Mao, J. T., Nie, W.-X., Tsu, I.-H., et al. (2010). White tea extract induces apoptosis in non-small cell lung cancer cells: The role of peroxisome proliferator-activated receptor-{gamma} and 15-lipoxygenases. Cancer Prevention Research, 3, 1132–1140.

    PubMed  CAS  Google Scholar 

  96. Liu, S. H., Shen, C. C., Yi, Y. C., et al. (2010). Honokiol inhibits gastric tumourigenesis by activation of 15-lipoxygenase-1 and consequent inhibition of peroxisome proliferator-activated receptor-γ and COX-2-dependent signals. British Journal of Pharmacology, 160, 1963–1972.

    PubMed  CAS  Google Scholar 

  97. Wu, Y., Fang, B., Yang, X. Q., et al. (2008). Therapeutic molecular targeting of 15-lipoxygenase-1 in colon cancer. Molecular Therapy, 16, 886–892.

    PubMed  CAS  Google Scholar 

  98. Wu, Y., Fang, B., Yang, X. Q., Wang, L., Chen, D., & Krasnykh, V. (2008). Therapeutic molecular targeting of 15-lipoxygenase-1 in colon cancer. Molecular Therapy, 16, 886–892.

    PubMed  CAS  Google Scholar 

  99. Kim, J.-S., Baek, S. J., Bottone, F. G., Sali, T., & Eling, T. E. (2005). Overexpression of 15-lipoxygenase-1 induces growth arrest through phosphorylation of p53 in human colorectal cancer cells. Molecular Cancer Research, 3, 511–517.

    PubMed  CAS  Google Scholar 

  100. Zhu, H., Glasgow, W., George, MD., et al. (2008). 15-Lipoxygenase-1 activates tumor suppressor p53 independent of enzymatic activity. International Journal of Cancer. 123, 2741-2749.

  101. Ostareck, D. H., Ostareck-Lederer, A., Wilm, M., Thiele, B. J., Mann, M., & Hentze, M. W. (1997). mRNA silencing in erythroid differentiation: hnRNP K and hnRNP E1 regulate 15-lipoxygenase translation from the 3′ end. Cell, 89, 597–606.

    PubMed  CAS  Google Scholar 

  102. Kamitani, H., Kameda, H., Kelavkar, U. P., & Eling, T. E. (2000). A GATA binding site is involved in the regulation of 15-lipoxygenase-1 expression in human colorectal carcinoma cell line, caco-2. FEBS Letters, 467, 341–347.

    PubMed  CAS  Google Scholar 

  103. Zhang, C., Richon, V., Ni, X., Talpur, R., & Duvic, M. (2005). Selective induction of apoptosis by histone deacetylase inhibitor SAHA in cutaneous T-cell lymphoma cells: Relevance to mechanism of therapeutic action. Journal of Investigative Dermatology, 125, 1045–1052.

    PubMed  CAS  Google Scholar 

  104. Zuo, X., Morris, J. S., & Shureiqi, I. (2008). Chromatin modification requirements for 15-lipoxygenase-1 transcriptional reactivation in colon cancer cells. Journal of Biological Chemistry, 283, 31341–31347.

    PubMed  CAS  Google Scholar 

  105. Bolden, J. E., Peart, M. J., & Johnstone, R. W. (2006). Anticancer activities of histone deacetylase inhibitors. Nature Reviews. Drug Discovery, 5, 769–784.

    PubMed  CAS  Google Scholar 

  106. Ogryzko, V. V., Schiltz, R. L., Russanova, V., Howard, B. H., & Nakatani, Y. (1996). The transcriptional coactivators p300 and CBP are histone acetyltransferases. Cell, 87, 953–959.

    PubMed  CAS  Google Scholar 

  107. Strahl, B. D., & Allis, C. D. (2000). The language of covalent histone modifications. Nature, 403, 41–45.

    PubMed  CAS  Google Scholar 

  108. Shi, Y. (2007). Histone lysine demethylases: Emerging roles in development, physiology and disease. Nature Reviews Genetics, 8, 829–833.

    PubMed  CAS  Google Scholar 

  109. Jenuwein, T., & Allis, C. D. (2001). Translating the histone code. Science, 293, 1074–1080.

    PubMed  CAS  Google Scholar 

  110. Martin, C., & Zhang, Y. (2005). The diverse functions of histone lysine methylation. Nature Reviews Molecular Cell Biology, 6, 838–849.

    PubMed  CAS  Google Scholar 

  111. Yamane, K., Toumazou, C., Y-i, T., et al. (2006). JHDM2A, a JmjC-containing H3K9 demethylase, facilitates transcription activation by androgen receptor. Cell, 125, 483–495.

    PubMed  CAS  Google Scholar 

  112. Tachibana, M., Sugimoto, K., Nozaki, M., et al. (2002). G9a histone methyltransferase plays a dominant role in euchromatic histone H3 lysine 9 methylation and is essential for early embryogenesis. Genes & Development, 16, 1779–1791.

    CAS  Google Scholar 

  113. Peters, A. H. F. M., Kubicek, S., Mechtler, K., et al. (2003). Partitioning and plasticity of repressive histone methylation states in mammalian chromatin. Molecular Cell, 12, 1577–1589.

    PubMed  CAS  Google Scholar 

  114. Rice, J. C., Briggs, S. D., Ueberheide, B., et al. (2003). Histone methyltransferases direct different degrees of methylation to define distinct chromatin domains. Molecular Cell, 12, 1591–1598.

    PubMed  CAS  Google Scholar 

  115. Lee, D. Y., Teyssier, C., Strahl, B. D., & Stallcup, M. R. (2005). Role of protein methylation in regulation of transcription. Endocrine Reviews, 26, 147–170.

    PubMed  CAS  Google Scholar 

  116. Tachibana, M., Ueda, J., Fukuda, M., et al. (2005). Histone methyltransferases G9a and GLP form heteromeric complexes and are both crucial for methylation of euchromatin at H3-K9. Genes & Development, 19, 815–826.

    CAS  Google Scholar 

  117. Kelavkar, U., Wang, S., Montero, A., Murtagh, J., Shah, K., & Badr, K. (1998). Human 15-lipoxygenase gene promoter: Analysis and identification of DNA binding sites for IL-13-induced regulatory factors in monocytes. Molecular Biology Reports, 25, 173–182.

    PubMed  CAS  Google Scholar 

  118. Liu, C., Xu, D., Sjoberg, J., Forsell, P., Bjorkholm, M., & Claesson, H. E. (2004). Transcriptional regulation of 15-lipoxygenase expression by promoter methylation. Experimental Cell Research, 297, 61–67.

    PubMed  CAS  Google Scholar 

  119. Kelavkar, U. P., Harya, N. S., Hutzley, J., et al. (2007). DNA methylation paradigm shift: 15-Lipoxygenase-1 upregulation in prostatic intraepithelial neoplasia and prostate cancer by atypical promoter hypermethylation. Prostaglandins & Other Lipid Mediators, 82, 185–197.

    CAS  Google Scholar 

  120. Hsi, L. C., Xi, X., Wu, Y., & Lippman, S. M. (2005). The methyltransferase inhibitor 5-aza-2-deoxycytidine induces apoptosis via induction of 15-lipoxygenase-1 in colorectal cancer cells. Molecular Cancer Therapeutics, 4, 1740–1746.

    PubMed  CAS  Google Scholar 

  121. Rhee, I., Bachman, K. E., Park, B. H., et al. (2002). DNMT1 and DNMT3b cooperate to silence genes in human cancer cells. Nature, 416, 552–556.

    PubMed  CAS  Google Scholar 

  122. Fuks, F., Burgers, W. A., Brehm, A., Hughes-Davies, L., & Kouzarides, T. (2000). DNA methyltransferase Dnmt1 associates with histone deacetylase activity. Nature Genetics, 24, 88–91.

    PubMed  CAS  Google Scholar 

  123. Robertson, K. D., Ait-Si-Ali, S., Yokochi, T., Wade, P. A., Jones, P. L., & Wolffe, A. P. (2000). DNMT1 forms a complex with Rb, E2F1 and HDAC1 and represses transcription from E2F-responsive promoters. Nature Genetics, 25, 338–342.

    PubMed  CAS  Google Scholar 

  124. Rountree, M. R., Bachman, K. E., & Baylin, S. B. (2000). DNMT1 binds HDAC2 and a new co-repressor, DMAP1, to form a complex at replication foci. Nature Genetics, 25, 269–277.

    PubMed  CAS  Google Scholar 

  125. O’Malley, B. W. (2007). Coregulators: From whence came these “master genes”. Molecular Endocrinology, 21, 1009–1013.

    PubMed  Google Scholar 

  126. Shureiqi, I., Xu, X., Chen, D., et al. (2001). Nonsteroidal anti-inflammatory drugs induce apoptosis in esophageal cancer cells by restoring 15-lipoxygenase-1 expression. Cancer Research, 61, 4879–4884.

    PubMed  CAS  Google Scholar 

  127. Jiang, W. G., Watkins, G., Douglas-Jones, A., & Mansel, R. E. (2006). Reduction of isoforms of 15-lipoxygenase (15-LOX)-1 and 15-LOX-2 in human breast cancer. Prostaglandins, Leukotrienes, and Essential Fatty Acids, 74, 235–245.

    PubMed  CAS  Google Scholar 

  128. Hennig, R., Kehl, T., Noor, S., et al. (2007). 15-Lipoxygenase-1 production is lost in pancreatic cancer and overexpression of the gene inhibits tumor cell growth. Neoplasia, 9, 917–926.

    PubMed  CAS  Google Scholar 

  129. Philips, B. J., Dhir, R., Hutzley, J., Sen, M., & Kelavkar, U. P. (2008). Polyunsaturated fatty acid metabolizing 15-Lipoxygenase-1 (15-LO-1) expression in normal and tumorigenic human bladder tissues. Applied Immunohistochemistry & Molecular Morphology, 16, 159–164.

    CAS  Google Scholar 

  130. Yuan, H., Li, M.-Y., Ma, L. T., et al. (2010). 15-Lipoxygenases and its metabolites 15(S)-HETE and 13(S)-HODE in the development of non-small cell lung cancer. Thorax, 65, 321–326.

    PubMed  Google Scholar 

  131. Kerjaschki, D., Bago-Horvath, Z., Rudas, M., et al. (2011). Lipoxygenase mediates invasion of intrametastatic lymphatic vessels and propagates lymph node metastasis of human mammary carcinoma xenografts in mouse. The Journal of Clinical Investigation, 121, 2000–2012.

    PubMed  CAS  Google Scholar 

  132. Jostarndt, K., Gellert, N., Rubic, T., et al. (2002). Dissociation of apoptosis induction and CD36 upregulation by enzymatically modified low-density lipoprotein in monocytic cells. Biochemical and Biophysical Research Communications, 290, 988–993.

    PubMed  CAS  Google Scholar 

  133. Wu, J., Xia, H. H., Tu, S. P., et al. (2003). 15-Lipoxygenase-1 mediates cyclooxygenase-2 inhibitor-induced apoptosis in gastric cancer. Carcinogenesis, 24, 243–247.

    PubMed  CAS  Google Scholar 

  134. Kim, J. H., Chang, J. H., Yoon, J.-H., Lee, J. G., Bae, J. H., & Kim, K.-S. (2006). 15-Lipoxygenase-1 induced by interleukin-4 mediates apoptosis in oral cavity cancer cells. Oral Oncology, 42, 825–830.

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported in part by National Cancer Institute R01 grants 137213 and 142969, by the Duncan Family Institute Seed Funding Research Program, and by the National Institutes of Health through MD Anderson’s Cancer Center Support Grant, CA016672.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Imad Shureiqi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

IL Lee, S., Zuo, X. & Shureiqi, I. 15-Lipoxygenase-1 as a tumor suppressor gene in colon cancer: is the verdict in?. Cancer Metastasis Rev 30, 481–491 (2011). https://doi.org/10.1007/s10555-011-9321-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10555-011-9321-0

Keywords

Navigation