Skip to main content

Advertisement

Log in

The heparanase system and tumor metastasis: is heparanase the seed and soil?

  • NON-THEMATIC REVIEW
  • Published:
Cancer and Metastasis Reviews Aims and scope Submit manuscript

Abstract

Tumor metastasis, the leading cause of cancer patients’ death, is still insufficiently understood. While concepts and mechanisms of tumor metastasis are evolving, it is widely accepted that cancer metastasis is accompanied by orchestrated proteolytic activity executed by array of proteases. While matrix metalloproteinases (MMPs) attracted much attention, other proteases constitute the tumor milieu, of which a large family consists of cysteine proteases named cathepsins. Like MMPs, some cathepsins are often upregulated in cancer and, once secreted or localized to the cell surface, can degrade components of the extracellular matrix. In addition, cathepsin L is held responsible for processing and activation of heparanase, an endo-β-glucuronidase capable of cleaving heparan sulfate side chains of heparan sulfate proteoglycans, activity that is strongly implicated in cell dissemination associated with tumor metastasis, angiogenesis, and inflammation. In this review, we discuss recent progress in heparanase research focusing on heparanase-related molecules namely, cathepsin L and heparanase 2 (Hpa2), a heparanase homolog.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Risau, W. (1997). Mechanisms of angiogenesis. Nature, 356(6626), 671–674.

    Google Scholar 

  2. Paget, S. (1889). The distribution of a secondary growths in cancer of the breast. Lancet, 133, 571–573.

    Article  Google Scholar 

  3. Talmadge, J. E., & Fidler, I. J. (2010). AACR centennial series: the biology of cancer metastasis:historical perspective. Cancer Research, 70(14), 5649–5669.

    Article  PubMed  CAS  Google Scholar 

  4. Nicolson, G. L. (1988). Organ specificity of tumor metastasis: role of preferential adhesion, invasion and growth of malignant cells at specific secondary sites. Cancer and Metastasis Reviews, 7(2), 143–188.

    Article  PubMed  CAS  Google Scholar 

  5. Kaplan, R. N., Rafii, S., & Lyden, D. (2006). Preparing the "soil": the premetastatic niche. Cancer Research, 66(23), 11089–11093.

    Article  PubMed  CAS  Google Scholar 

  6. Kaplan, R. N., Psaila, B., & Lyden, D. (2006). Bone marrow cells in the ‘pre-metastatic niche’: within bone and beyond. Cancer and Metastasis Reviews, 25(4), 521–529.

    Article  PubMed  Google Scholar 

  7. Kaplan, R. N., Riba, R. D., Zacharoulis, S., et al. (2005). VEGFR1-positive haematopoietic bone marrow progenitors initiate the pre-metastatic niche. Nature, 438(7069), 820–827.

    Article  PubMed  CAS  Google Scholar 

  8. Ferrara, N., Hillan, K. J., Gerber, H. P., et al. (2004). Discovery and development of bevacizumab, an anti-VEGF antibody for treating cancer. Nature Reviews. Drug Discovery, 3(5), 391–400.

    Article  PubMed  CAS  Google Scholar 

  9. Grivennikov, S. I., Greten, F. R., & Karin, M. (2010). Immunity, inflammation, and cancer. Cell, 140(6), 883–899.

    Article  PubMed  CAS  Google Scholar 

  10. Mantovani, A., & Sica, A. (2010). Macrophages, innate immunity and cancer: balance, tolerance, and diversity. Current Opinion in Immunology, 22(2), 231–237.

    Article  PubMed  CAS  Google Scholar 

  11. Condeelis, J., & Pollard, J. W. (2006). Macrophages: obligate partners for tumor cell migration, invasion, and metastasis. Cell, 124(2), 263–266.

    Article  PubMed  CAS  Google Scholar 

  12. Dirkx, A. E., Oude Egbrink, M. G., Wagstaff, J., et al. (2006). Monocyte/macrophage infiltration in tumors: modulators of angiogenesis. Journal of Leukocyte Biology, 80(6), 1183–1196.

    Article  PubMed  CAS  Google Scholar 

  13. Pollard, J. W. (2004). Tumour-educated macrophages promote tumour progression and metastasis. Nature Reviews. Cancer, 4(1), 71–78.

    Article  PubMed  CAS  Google Scholar 

  14. Franco, O. E., Shaw, A. K., Strand, D. W., et al. (2010). Cancer associated fibroblasts in cancer pathogenesis. Seminars in Cell & Developmental Biology, 21(1), 33–39.

    Article  CAS  Google Scholar 

  15. Shimoda, M., Mellody, K. T., & Orimo, A. (2010). Carcinoma-associated fibroblasts are a rate- limiting determinant for tumour progression. Seminars in Cell & Developmental Biology, 21(1), 19–25.

    Article  CAS  Google Scholar 

  16. Bhowmick, N. A., Chytil, A., Plieth, D., et al. (2004). TGF-beta signaling in fibroblasts modulates the oncogenic potential of adjacent epithelia. Science, 303, 848–851.

    Article  PubMed  CAS  Google Scholar 

  17. Bhowmick, N. A., Neilson, E. G., & Moses, H. L. (2004). Stromal fibroblasts in cancer initiation and progression. Nature, 432(7015), 332–337.

    Article  PubMed  CAS  Google Scholar 

  18. Kalluri, R., & Zeisberg, M. (2006). Fibroblasts in cancer. Nature Reviews. Cancer, 6(5), 392–401.

    Article  PubMed  CAS  Google Scholar 

  19. Erez, N., Truitt, M., Olson, P., et al. (2010). Cancer-associated fibroblasts are activated in incipient neoplasia to orchestrate tumor-promoting inflammation in an NF-kappaB-dependent manner. Cancer Cell, 17(2), 135–147.

    Article  PubMed  CAS  Google Scholar 

  20. Hanahan, D., & Weinberg, R. A. (2000). The hallmarks of cancer. Cell, 100(1), 57–70.

    Article  PubMed  CAS  Google Scholar 

  21. Pentheroudakis, G., Briasoulis, E., & Pavlidis, N. (2007). Cancer of unknown primary site: missing primary or missing biology? The Oncologist, 12(4), 418–425.

    Article  PubMed  CAS  Google Scholar 

  22. Husemann, Y., Geigl, J. B., Schubert, F., et al. (2008). Systemic spread is an early step in breast cancer. Cancer Cell, 13(1), 58–68.

    Article  PubMed  CAS  Google Scholar 

  23. Podsypanina, K., Du, Y. C., Jechlinger, M., et al. (2008). Seeding and propagation of untransformed mouse mammary cells in the lung. Science, 321, 1841–1844.

    Article  PubMed  CAS  Google Scholar 

  24. Kim, M-Y., Oskarsson, T., Acharyya, S., Nguyen, D. X., Zhang, X. H-F., Norton, L., & Massague, J. (2009). Tumor self-seeding by circulating cancer cells. Cell, 139, 1315–1326.

    Google Scholar 

  25. Leung, C. T., & Brugge, J. S. (2009). Tumor self-seeding: bidirectional flow of tumor cells. Cell, 139(7), 1226–1228.

    Article  PubMed  Google Scholar 

  26. Duda, D. G., Duyverman, A. M., Kohno, M., et al. (2010). Malignant cells facilitate lung metastasis by bringing their own soil. Proceedings of the National Academy of Sciences of the United States of America, 107(50), 21677–21682.

    Article  PubMed  CAS  Google Scholar 

  27. Kessenbrock, K., Plaks, V., & Werb, Z. (2010). Matrix metalloproteinases: regulators of the tumor microenvironment. Cell, 141(1), 52–67.

    Article  PubMed  CAS  Google Scholar 

  28. Murdoch, C., Muthana, M., Coffelt, S. B., et al. (2008). The role of myeloid cells in the promotion of tumour angiogenesis. Nature Reviews. Cancer, 8(8), 618–631.

    Article  PubMed  CAS  Google Scholar 

  29. Noel, A., Jost, M., & Maquoi, E. (2008). Matrix metalloproteinases at cancer tumor-host interface. Seminars in Cell & Developmental Biology, 19(1), 52–60.

    Article  CAS  Google Scholar 

  30. Van Damme, J., Struyf, S., & Opdenakker, G. (2004). Chemokine-protease interactions in cancer. Seminars in Cancer Biology, 14(3), 201–208.

    Article  PubMed  CAS  Google Scholar 

  31. Gocheva, V., & Joyce, J. A. (2007). Cysteine cathepsins and the cutting edge of cancer invasion. Cell Cycle, 6(1), 60–64.

    Article  PubMed  CAS  Google Scholar 

  32. Lankelma, J. M., Voorend, D. M., Barwari, T., et al. (2010). Cathepsin L, target in cancer treatment? Life Sciences, 86(7–8), 225–233.

    Article  PubMed  CAS  Google Scholar 

  33. Turk, B., Turk, D., & Turk, V. (2000). Lysosomal cysteine proteases: more than scavengers. Biochimica et Biophysica Acta, 1477(1–2), 98–111.

    PubMed  CAS  Google Scholar 

  34. Turk, V., Turk, B., & Turk, D. (2001). Lysosomal cysteine proteases: facts and opportunities. The EMBO Journal, 20(17), 4629–4633.

    Article  PubMed  CAS  Google Scholar 

  35. Mohamed, M. M., & Sloane, B. F. (2006). Cysteine cathepsins: multifunctional enzymes in cancer. Nature Reviews. Cancer, 6(10), 764–775.

    Article  PubMed  CAS  Google Scholar 

  36. Reiser, J., Adair, B., & Reinheckel, T. (2010). Specialized roles for cysteine cathepsins in health and disease. Journal of Clinical Investigation, 120(10), 3421–3431.

    Article  PubMed  CAS  Google Scholar 

  37. Berdowska, I. (2004). Cysteine proteases as disease markers. Clinica Chimica Acta, 342(1–2), 41–69.

    Article  CAS  Google Scholar 

  38. Palermo, C., & Joyce, J. A. (2008). Cysteine cathepsin proteases as pharmacological targets in cancer. Trends in Pharmacological Sciences, 29(1), 22–28.

    Article  PubMed  CAS  Google Scholar 

  39. Zcharia, E., Jia, J., Zhang, X., et al. (2009). Newly generated heparanase knock-out mice unravel co-regulation of heparanase and matrix metalloproteinases. PLoS ONE, 4(4), e5181.

    Article  PubMed  CAS  Google Scholar 

  40. Iozzo, R. V., & San Antonio, J. D. (2001). Heparan sulfate proteoglycans: heavy hitters in the angiogenesis arena. Journal of Clinical Investigation, 108(3), 349–355.

    PubMed  CAS  Google Scholar 

  41. Kjellen, L., & Lindahl, U. (1991). Proteoglycans: structures and interactions. Annual Review of Biochemistry, 60, 443–475.

    Article  PubMed  CAS  Google Scholar 

  42. Parish, C. R., Freeman, C., & Hulett, M. D. (2001). Heparanase: a key enzyme involved in cell invasion. Biochimica et Biophysica Acta, 1471(3), M99–M108.

    PubMed  CAS  Google Scholar 

  43. Vlodavsky, I., & Friedmann, Y. (2001). Molecular properties and involvement of heparanase in cancer metastasis and angiogenesis. Journal of Clinical Investigation, 108(3), 341–347.

    PubMed  CAS  Google Scholar 

  44. Ilan, N., Elkin, M., & Vlodavsky, I. (2006). Regulation, function and clinical significance of heparanase in cancer metastasis and angiogenesis. The International Journal of Biochemistry & Cell Biology, 38(12), 2018–2039.

    Article  CAS  Google Scholar 

  45. Fux, L., Ilan, N., Sanderson, R. D., & Vlodavsky, I. (2009). Heparanase: busy at the cell surface. Trends in Biochemical Sciences, 34(10), 511–519.

    Article  PubMed  CAS  Google Scholar 

  46. Shafat I, Bem-Arush MW, Issakov J, et al (2011) Pre-clinical and clinical significance of heparanase in Ewing’s sarcoma. J Cell Mol Med (in press)

  47. Vreys, V., & David, G. (2007). Mammalian heparanase: what is the message? Journal of Cellular and Molecular Medicine, 11(3), 427–452.

    Article  PubMed  CAS  Google Scholar 

  48. Vlodavsky, I., Ilan, N., Naggi, A., et al. (2007). Heparanase: structure, biological functions, and inhibition by heparin-derived mimetics of heparan sulfate. Current Pharmaceutical Design, 13(20), 2057–2073.

    Article  PubMed  CAS  Google Scholar 

  49. Casu, B., Vlodavsky, I., & Sanderson, R. D. (2008). Non-anticoagulant heparins and inhibition of cancer. Pathophysiology of Haemostasis and Thrombosis, 36(3–4), 195–203.

    PubMed  Google Scholar 

  50. Dredge, K., Hammond, E., Davis, K., et al. (2010). The PG500 series: novel heparan sulfate mimetics as potent angiogenesis and heparanase inhibitors for cancer therapy. Invest New Drugs, 28(3), 276–283.

    Article  PubMed  CAS  Google Scholar 

  51. Fairweather, J. K., Hammond, E., Johnstone, K. D., et al. (2008). Synthesis and heparanase inhibitory activity of sulfated mannooligosaccharides related to the antiangiogenic agent PI-88. Bioorganic & Medicinal Chemistry, 16(2), 699–709.

    Article  CAS  Google Scholar 

  52. Ferro, V., & Hammond, E. (2004). The development of inhibitors of heparanase, a key enzyme involved in tumour metastasis, angiogenesis and inflammation. Mini Rev Med Chem, 4(6), 693–702.

    PubMed  CAS  Google Scholar 

  53. Johnstone, K. D., Karoli, T., Liu, L., et al. (2010). Synthesis and biological evaluation of polysulfated oligosaccharide glycosides as inhibitors of angiogenesis and tumor growth. Journal of Medicinal Chemistry, 53(4), 1686–1699.

    Article  PubMed  CAS  Google Scholar 

  54. McKenzie, E. A. (2007). Heparanase: a target for drug discovery in cancer and inflammation. British Journal of Pharmacology, 151(1), 1–14.

    Article  PubMed  CAS  Google Scholar 

  55. Miao, H. Q., Liu, H., Navarro, E., et al. (2006). Development of heparanase inhibitors for anti- cancer therapy. Current Medicinal Chemistry, 13(18), 2101–2111.

    Article  PubMed  CAS  Google Scholar 

  56. Simizu, S., Ishida, K., & Osada, H. (2004). Heparanase as a molecular target of cancer chemotherapy. Cancer Science, 95(7), 553–558.

    Article  PubMed  CAS  Google Scholar 

  57. Shteper, P. J., Zcharia, E., Ashhab, Y., et al. (2003). Role of promoter methylation in regulation of the mammalian heparanase gene. Oncogene, 22(49), 7737–7749.

    Article  PubMed  CAS  Google Scholar 

  58. Ogishima, T., Shiina, H., Breault, J. E., et al. (2005). Increased heparanase expression is caused by promoter hypomethylation and up-regulation of transcriptional factor early growth response-1 in human prostate cancer. Clinical Cancer Research, 11(3), 1028–1036.

    PubMed  CAS  Google Scholar 

  59. Ogishima, T., Shiina, H., Breault, J. E., et al. (2005). Promoter CpG hypomethylation and transcription factor EGR1 hyperactivate heparanase expression in bladder cancer. Oncogene, 24(45), 6765–6772.

    Article  PubMed  CAS  Google Scholar 

  60. de Mestre, A. M., Khachigian, L. M., Santiago, F. S., et al. (2003). Regulation of inducible heparanase gene transcription in activated T cells by early growth response 1. The Journal of Biological Chemistry, 278(50), 50377–50385.

    Article  PubMed  Google Scholar 

  61. de Mestre, A. M., Rao, S., Hornby, J. R., et al. (2005). Early growth response gene 1 (EGR1) regulates heparanase gene transcription in tumor cells. The Journal of Biological Chemistry, 277(42), 35136–35147.

    Article  CAS  Google Scholar 

  62. Jiang, P., Kumar, A., Parrillo, J. E., et al. (2002). Cloning and characterization of the human heparanase-1 (HPR1) gene promoter: role of GA-binding protein and Sp1 in regulating HPR1 basal promoter activity. The Journal of Biological Chemistry, 277(11), 8989–8998.

    Article  PubMed  CAS  Google Scholar 

  63. Jean, D., Rousselet, N., & Frade, R. (2006). Expression of cathepsin L in human tumor cells is under the control of distinct regulatory mechanisms. Oncogene, 25(10), 1474–1484.

    Article  PubMed  CAS  Google Scholar 

  64. Abdulkadir, S. A., Qu, Z., Garabedian, E., et al. (2001). Impaired prostate tumorigenesis in Egr1-deficient mice. Natural Medicines, 7(1), 101–107.

    Article  CAS  Google Scholar 

  65. Khachigian, L. M. (2004). Early growth response-1: blocking angiogenesis by shooting the messenger. Cell Cycle, 3(1), 10–11.

    Article  PubMed  CAS  Google Scholar 

  66. Ishidoh, K., Taniguchi, S., & Kominami, E. (1997). Egr family member proteins are involved in the activation of the cathepsin L gene in v-src-transformed cells. Biochemical and Biophysical Research Communications, 238(2), 665–669.

    Article  PubMed  CAS  Google Scholar 

  67. Barash, U., Cohen-Kaplan, V., Dowek, I., et al. (2010). Proteoglycans in health and disease: new concepts for heparanase function in tumor progression and metastasis. The FEBS Journal, 277(19), 3890–3903.

    Article  PubMed  CAS  Google Scholar 

  68. Levy-Adam, F., Ilan, N., & Vlodavsky, I. (2010). Tumorigenic and adhesive properties of heparanase. Seminars in Cancer Biology, 20(3), 153–160.

    Article  PubMed  CAS  Google Scholar 

  69. Cohen-Kaplan, V., Naroditsky, I., Zetser, A., et al. (2008). Heparanase induces VEGF C and facilitates tumor lymphangiogenesis. International Journal of Cancer, 123(11), 2566–2573.

    Article  CAS  Google Scholar 

  70. Levicar, N., Dewey, R. A., Daley, E., et al. (2003). Selective suppression of cathepsin L by antisense cDNA impairs human brain tumor cell invasion in vitro and promotes apoptosis. Cancer Gene Therapy, 10(2), 141–151.

    Article  PubMed  CAS  Google Scholar 

  71. Rousselet, N., Mills, L., Jean, D., et al. (2004). Inhibition of tumorigenicity and metastasis of human melanoma cells by anti-cathepsin L single chain variable fragment. Cancer Research, 64(1), 146–151.

    Article  PubMed  CAS  Google Scholar 

  72. Hanahan, D., & Folkman, J. (1996). Patterns and emerging mechanisms of the angiogenic switch during tumorigenesis. Cell, 86(3), 353–364.

    Article  PubMed  CAS  Google Scholar 

  73. Joyce, J. A., Baruch, A., Chehade, K., et al. (2004). Cathepsin cysteine proteases are effectors of invasive growth and angiogenesis during multistage tumorigenesis. Cancer Cell, 5(5), 443–453.

    Article  PubMed  CAS  Google Scholar 

  74. Joyce, J. A., Freeman, C., Meyer-Morse, N., et al. (2005). A functional heparan sulfate mimetic implicates both heparanase and heparan sulfate in tumor angiogenesis and invasion in a mouse model of multistage cancer. Oncogene, 24(25), 4037–4051.

    PubMed  CAS  Google Scholar 

  75. Gocheva, V., Zeng, W., Ke, D., et al. (2006). Distinct roles for cysteine cathepsin genes in multistage tumorigenesis. Genes & Development, 20(5), 543–556.

    Article  CAS  Google Scholar 

  76. Leto, G., Sepporta, M. V., Crescimanno, M., et al. (2010). Cathepsin L in metastatic bone disease: therapeutic implications. Biological Chemistry, 391(6), 655–664.

    Article  PubMed  CAS  Google Scholar 

  77. Katunuma, N., Murata, E., Kakegawa, H., et al. (1999). Structure based development of novel specific inhibitors for cathepsin L and cathepsin S in vitro and in vivo. FEBS Letters, 458(1), 6–10.

    Article  PubMed  CAS  Google Scholar 

  78. Katunuma, N., Tsuge, H., Nukatsuka, M., et al. (2002). Structure-based design of specific cathepsin inhibitors and their application to protection of bone metastases of cancer cells. Archives of Biochemistry and Biophysics, 397(2), 305–311.

    Article  PubMed  CAS  Google Scholar 

  79. Kelly, T., Miao, H.-Q., Yang, Y., et al. (2003). High heparanase activity in multiple myeloma is associated with elevated microvessel density. Cancer Research, 63(24), 8749–8756.

    PubMed  CAS  Google Scholar 

  80. Mahtouk, K., Hose, D., Raynaud, P., et al. (2007). Heparanase influences expression and shedding of syndecan-1, and its expression by the bone marrow environment is a bad prognostic factor in multiple myeloma. Blood, 109(11), 4914–4923.

    Article  PubMed  CAS  Google Scholar 

  81. Purushothaman, A., Uyama, T., Kobayashi, F., et al. (2010). Heparanase-enhanced shedding of syndecan-1 by myeloma cells promotes endothelial invasion and angiogenesis. Blood, 115(12), 2449–2457.

    Article  PubMed  CAS  Google Scholar 

  82. Yang, Y., Macleod, V., Miao, H. Q., et al. (2007). Heparanase enhances syndecan-1 shedding: a novel mechanism for stimulation of tumor growth and metastasis. The Journal of Biological Chemistry, 282(18), 13326–13333.

    Article  PubMed  CAS  Google Scholar 

  83. Yang, Y., Macleod, V., Bendre, M., et al. (2005). Heparanase promotes the spontaneous metastasis of myeloma cells to bone. Blood, 105(3), 1303–1309.

    Article  PubMed  CAS  Google Scholar 

  84. Casu, B., Guerrini, M., Guglieri, S., et al. (2004). Undersulfated and glycol-split heparins endowed with antiangiogenic activity. Journal of Medicinal Chemistry, 47(4), 838–848.

    Article  PubMed  CAS  Google Scholar 

  85. Naggi, A., Casu, B., Perez, M., et al. (2005). Modulation of the heparanase-inhibiting activity of heparin through selective desulfation, graded N-acetylation, and glycol splitting. The Journal of Biological Chemistry, 280(13), 12103–12113.

    Article  PubMed  CAS  Google Scholar 

  86. Yang, Y., MacLeod, V., Dai, Y., et al. (2007). The syndecan-1 heparan sulfate proteoglycan is a viable target for myeloma therapy. Blood, 110(6), 2041–2048.

    Article  PubMed  CAS  Google Scholar 

  87. Kelly, T., Suva, L. J., Huang, Y., et al. (2005). Expression of heparanase by primary breast tumors promotes bone resorption in the absence of detectable bone metastases. Cancer Research, 65(13), 5778–5784.

    Article  PubMed  CAS  Google Scholar 

  88. Kelly, T., Suva, L. J., Nicks, K. M., et al. (2010). Tumor-derived syndecan-1 mediates distal cross-talk with bone that enhances osteoclastogenesis. Journal of Bone and Mineral Research, 25(6), 1295–1304.

    Article  PubMed  CAS  Google Scholar 

  89. Yang, Y., Ren, Y., Ramani, V. C., et al. (2010). Heparanase enhances local and systemic osteolysis in multiple myeloma by upregulating the expression and secretion of RANKL. Cancer Research, 70(21), 8329–8338.

    Article  PubMed  CAS  Google Scholar 

  90. Ramani VC, Yang Y, Ren Y, et al (2011) Heparanase plays a dual role in driving hepatocyte growth factor (HGF) signaling by enhancing HGF expression and activity. J Biol Chem (in press)

  91. Jean, D., Rousselet, N., & Frade, R. (2008). Cathepsin L expression is up-regulated by hypoxia in human melanoma cells: role of its 5′-untranslated region. The Biochemical Journal, 413(1), 125–134.

    Article  PubMed  CAS  Google Scholar 

  92. Arvatz, G., Barash, U., Nativ, O., et al. (2010). Post-transcriptional regulation of heparanase gene expression by a 3′ AU-rich element. The FASEB Journal, 24(12), 4969–4976.

    Article  PubMed  CAS  Google Scholar 

  93. Barreau, C., Paillard, L., & Osborne, H. B. (2005). AU-rich elements and associated factors: are there unifying principles? Nucleic Acids Research, 33(22), 7138–7150.

    Article  PubMed  CAS  Google Scholar 

  94. Chen, C. Y., & Shyu, A. B. (1995). AU-rich elements: characterization and importance in mRNA degradation. Trends in Biochemical Sciences, 20(11), 465–470.

    Article  PubMed  CAS  Google Scholar 

  95. Eberhardt, W., Doller, A., el Akool, S., et al. (2007). Modulation of mRNA stability as a novel therapeutic approach. Pharmacology & Therapeutics, 114(1), 56–73.

    Article  CAS  Google Scholar 

  96. Barash, U., Cohen-Kaplan, V., Arvatz, G., et al. (2010). A novel human heparanase splice variant, T5, endowed with protumorigenic characteristics. The FASEB Journal, 24(4), 1239–1248.

    Article  PubMed  CAS  Google Scholar 

  97. Nasser, N. J., Avivi, A., Shushy, M., et al. (2007). Cloning, expression, and characterization of an alternatively spliced variant of human heparanase. Biochemical and Biophysical Research Communications, 354(1), 33–38.

    Article  PubMed  CAS  Google Scholar 

  98. Sato, M., Amemiya, K., Hayakawa, S., et al. (2008). Subcellular localization of human heparanase and its alternative splice variant in COS-7 cells. Cell Biochemistry and Function, 26(6), 676–683.

    Article  PubMed  CAS  Google Scholar 

  99. Dong, J., Kukula, A. K., Toyoshima, M., et al. (2000). Genomic organization and chromosome localization of the newly identified human heparanase gene. Gene, 253(2), 171–178.

    Article  PubMed  CAS  Google Scholar 

  100. Barash, U., Cohen-Kaplan, V., Arvatz, G., et al. (2009). A novel human heparanase splice variant, T5, endowed with protumorigenic characteristics. The FASEB Journal, 24, 1239–1248.

    Article  PubMed  CAS  Google Scholar 

  101. Ben-Zaken, O., Shafat, I., Gingis-Velitski, S., et al. (2008). Low and high affinity receptors mediate cellular uptake of heparanase. The International Journal of Biochemistry & Cell Biology, 40(3), 530–542.

    Article  CAS  Google Scholar 

  102. Cohen-Kaplan, V., Doweck, I., Naroditsky, I., et al. (2008). Heparanase augments epidermal growth factor receptor phosphorylation: correlation with head and neck tumor progression. Cancer Research, 68(24), 10077–10085.

    Article  PubMed  CAS  Google Scholar 

  103. Fux, L., Feibish, N., Cohen-Kaplan, V., et al. (2009). Structure-function approach identifies a COOH-terminal domain that mediates heparanase signaling. Cancer Research, 69(5), 1758–1767.

    Article  PubMed  CAS  Google Scholar 

  104. Zetser, A., Bashenko, Y., Edovitsky, E., et al. (2006). Heparanase induces vascular endothelial growth factor expression: correlation with p38 phosphorylation levels and Src activation. Cancer Research, 66(3), 1455–1463.

    Article  PubMed  CAS  Google Scholar 

  105. Chen, G., Wang, D., Vikramadithyan, R., et al. (2004). Inflammatory cytokines and fatty acids regulate endothelial cell heparanase expression. Biochemistry, 43(17), 4971–4977.

    Article  PubMed  CAS  Google Scholar 

  106. Sotnikov, I., Hershkoviz, R., Grabovsky, V., et al. (2004). Enzymatically quiescent heparanase augments T cell interactions with VCAM-1 and extracellular matrix components under versatile dynamic contexts. Journal of Immunology, 172(9), 5185–5193.

    CAS  Google Scholar 

  107. Shafat, I., Vlodavsky, I., & Ilan, N. (2006). Characterization of mechanisms involved in secretion of active heparanase. The Journal of Biological Chemistry, 281(33), 23804–23811.

    Article  PubMed  CAS  Google Scholar 

  108. Communi, D., Janssens, R., Suarez-Huerta, N., et al. (2000). Advances in signalling by extracellular nucleotides. the role and transduction mechanisms of P2Y receptors. Cellular Signalling, 12(6), 351–360.

    Article  PubMed  CAS  Google Scholar 

  109. Abbracchio, M. P., & Burnstock, G. (1998). Purinergic signalling: pathophysiological roles. Japanese Journal of Pharmacology, 78(2), 113–145.

    Article  PubMed  CAS  Google Scholar 

  110. van der Weyden, L., Conigrave, A. D., & Morris, M. B. (2000). Signal transduction and white cell maturation via extracellular ATP and the P2Y11 receptor. Immunology and Cell Biology, 78(4), 369–374.

    Article  PubMed  Google Scholar 

  111. Gordon, J. L. (1986). Extracellular ATP: effects, sources and fate. The Biochemical Journal, 233(2), 309–319.

    PubMed  CAS  Google Scholar 

  112. Wang, F., Wang, Y., Kim, M. S., et al. (2010). Glucose-induced endothelial heparanase secretion requires cortical and stress actin reorganization. Cardiovascular Research, 87(1), 127–136.

    Article  PubMed  CAS  Google Scholar 

  113. Turk, V., Kos, J., & Turk, B. (2004). Cysteine cathepsins (proteases)—on the main stage of cancer? Cancer Cell, 5(5), 409–410.

    Article  PubMed  CAS  Google Scholar 

  114. Shafat, I., Zcharia, E., Nisman, B., et al. (2006). An ELISA method for the detection and quantification of human heparanase. Biochemical and Biophysical Research Communications, 341(4), 958–963.

    Article  PubMed  CAS  Google Scholar 

  115. Shafat, I., Ben-Barak, A., Postovsky, S., et al. (2007). Heparanase levels are elevated in the plasma of pediatric cancer patients and correlate with response to anticancer treatment. Neoplasia, 9(11), 909–916.

    Article  PubMed  CAS  Google Scholar 

  116. Shafat, I., Pode, D., Peretz, T., et al. (2008). Clinical significance of urine heparanase in bladder cancer progression. Neoplasia, 10(2), 125–130.

    Article  PubMed  CAS  Google Scholar 

  117. Furuyama, N., & Fujisawa, Y. (2000). Regulation of collagenolytic protease secretion through c-Src in osteoclasts. Biochemical and Biophysical Research Communications, 272(1), 116–124.

    Article  PubMed  CAS  Google Scholar 

  118. Levy-Adam, F., Miao, H. Q., Heinrikson, R. L., et al. (2003). Heterodimer formation is essential for heparanase enzymatic activity. Biochemical and Biophysical Research Communications, 308(4), 885–891.

    Article  PubMed  CAS  Google Scholar 

  119. Gingis-Velitski, S., Zetser, A., Flugelman, M. Y., et al. (2004). Heparanase induces endothelial cell migration via protein kinase B/Akt activation. The Journal of Biological Chemistry, 279(22), 23536–23541.

    Article  PubMed  CAS  Google Scholar 

  120. Vreys, V., Delande, N., Zhang, Z., et al. (2005). Cellular uptake of mammalian heparanase precursor involves low density lipoprotein receptor-related proteins, mannose 6- phosphate receptors, and heparan sulfate proteoglycans. The Journal of Biological Chemistry, 280(39), 33141–33148.

    Article  PubMed  CAS  Google Scholar 

  121. Goldshmidt, O., Nadav, L., Aingorn, H., et al. (2002). Human heparanase is localized within lysosomes in a stable form. Experimental Cell Research, 281(1), 50–62.

    Article  PubMed  CAS  Google Scholar 

  122. Nadav, L., Eldor, A., Yacoby-Zeevi, O., et al. (2002). Activation, processing and trafficking of extracellular heparanase by primary human fibroblasts. J Cell Sci, 115(10), 2179–2187.

    PubMed  CAS  Google Scholar 

  123. Cohen, E., Atzmon, R., Vlodavsky, I., et al. (2005). Heparanase processing by lysosomal/endosomal protein preparation. FEBS Letters, 579(11), 2334–2338.

    Article  PubMed  CAS  Google Scholar 

  124. Zetser, A., Levy-Adam, F., Kaplan, V., et al. (2004). Processing and activation of latent heparanase occurs in lysosomes. Journal of Cell Science, 117(11), 2249–2258.

    Article  PubMed  CAS  Google Scholar 

  125. Abboud-Jarrous, G., Atzmon, R., Peretz, T., et al. (2008). Cathepsin L is responsible for processing and activation of proheparanase through multiple cleavages of a linker segment. The Journal of Biological Chemistry, 283(26), 18167–18176.

    Article  PubMed  CAS  Google Scholar 

  126. Abboud-Jarrous, G., Rangini-Guetta, Z., Aingorn, H., et al. (2005). Site-directed mutagenesis, proteolytic cleavage, and activation of human proheparanase. The Journal of Biological Chemistry, 280(14), 13568–13575.

    Article  PubMed  CAS  Google Scholar 

  127. Lerner E, Hermano E, Zcharia E, et al (2011) Heparanase powers a chronic inflammation circuit that promotes colitis-associated tumorigenesis. J Clin Invest (in press)

  128. Vlodavsky, I., Friedmann, Y., Elkin, M., et al. (1999). Mammalian heparanase: gene cloning, expression and function in tumor progression and metastasis. Natural Medicines, 5(7), 793–802.

    Article  CAS  Google Scholar 

  129. Hulett, M. D., Freeman, C., Hamdorf, B. J., et al. (1999). Cloning of mammalian heparanase, an important enzyme in tumor invasion and metastasis. Natural Medicines, 5(7), 803–809.

    Article  CAS  Google Scholar 

  130. Kussie, P. H., Hulmes, J. D., Ludwig, D. L., et al. (1999). Cloning and functional expression of a human heparanase gene. Biochemical and Biophysical Research Communications, 261(1), 183–187.

    Article  PubMed  CAS  Google Scholar 

  131. Toyoshima, M., & Nakajima, M. (1999). Human heparanase. Purification, characterization, cloning, and expression. The Journal of Biological Chemistry, 274(34), 24153–24160.

    Article  PubMed  CAS  Google Scholar 

  132. McKenzie, E., Tyson, K., Stamps, A., et al. (2000). Cloning and expression profiling of Hpa2, a novel mammalian heparanase family member. Biochemical and Biophysical Research Communications, 276(3), 1170–1177.

    Article  PubMed  CAS  Google Scholar 

  133. Gingis-Velitski, S., Zetser, A., Kaplan, V., et al. (2004). Heparanase uptake is mediated by cell membrane heparan sulfate proteoglycans. The Journal of Biological Chemistry, 279(42), 44084–44092.

    Article  PubMed  CAS  Google Scholar 

  134. Levy-Adam, F., Feld, S., Suss-Toby, E., et al. (2008). Heparanase facilitates cell adhesion and spreading by clustering of cell surface heparan sulfate proteoglycans. PLoS ONE, 3(6), e2319.

    Article  PubMed  CAS  Google Scholar 

  135. Fuki, I. V., Kuhn, K. M., Lomazov, I. R., et al. (1997). The syndecan family of proteoglycans. Novel receptors mediating internalization of atherogenic lipoproteins in vitro. Journal of Clinical Investigation, 100(6), 1611–1622.

    Article  PubMed  CAS  Google Scholar 

  136. Stanford, K. I., Bishop, J. R., Foley, E. M., et al. (2009). Syndecan-1 is the primary heparan sulfate proteoglycan mediating hepatic clearance of triglyceride-rich lipoproteins in mice. Journal of Clinical Investigation, 119(11), 3236–3245.

    PubMed  CAS  Google Scholar 

  137. Fears, C. Y., & Woods, A. (2006). The role of syndecans in disease and wound healing. Matrix Biology, 25(7), 443–456.

    Article  PubMed  CAS  Google Scholar 

  138. De Moura, J. P., Jr., Nicolau, S. M., Stavale, J. N., et al. (2009). Heparanase-2 expression in normal ovarian epithelium and in benign and malignant ovarian tumors. International Journal of Gynecological Cancer, 19(9), 1494–1500.

    Article  PubMed  Google Scholar 

  139. Peretti, T., Waisberg, J., Mader, A. M., et al. (2008). Heparanase-2, syndecan-1, and extracellular matrix remodeling in colorectal carcinoma. European Journal of Gastroenterology & Hepatology, 20(8), 756–765.

    Article  CAS  Google Scholar 

  140. Levy-Adam, F., Feld, S., Cohen-Kaplan, V., et al. (2010). Heparanase 2 interacts with heparan sulfate with high affinity and inhibits heparanase activity. The Journal of Biological Chemistry, 285(36), 28010–28019.

    Article  PubMed  CAS  Google Scholar 

  141. Doweck, I., Kaplan-Cohen, V., Naroditsky, I., et al. (2006). Heparanase localization and expression by head and neck cancer: correlation with tumor progression and patient survival. Neoplasia, 8(12), 1055–1061.

    Article  PubMed  CAS  Google Scholar 

  142. Bar-Sela, G., Kaplan-Cohen, V., Ilan, N., et al. (2006). Heparanase expression in nasopharyngeal carcinoma inversely correlates with patient survival. Histopathology, 49(2), 188–193.

    Article  PubMed  CAS  Google Scholar 

  143. Ben-Izhak, O., Kaplan-Cohen, V., Ilan, N., et al. (2006). Heparanase expression in malignant salivary gland tumors inversely correlates with long-term survival. Neoplasia, 8(10), 879–884.

    Article  PubMed  CAS  Google Scholar 

  144. Nagler, R., Ben-Izhak, O., Cohen-Kaplan, V., et al. (2007). Heparanase up-regulation in tongue cancer: tissue and saliva analysis. Cancer, 110(12), 2732–2739.

    Article  PubMed  CAS  Google Scholar 

  145. Leiser Y, Abu-El-Naaj I, Sabo E, et al (2011) Prognostic value of heparanase expression and cellular localization in oral cancer. Head Neck (in press)

  146. Sparmann, A., & van Lohuizen, M. (2006). Polycomb silencers control cell fate, development and cancer. Nature Reviews. Cancer, 6(11), 846–856.

    Article  PubMed  CAS  Google Scholar 

  147. Kleer, C. G., Cao, Q., Varambally, S., et al. (2003). EZH2 is a marker of aggressive breast cancer and promotes neoplastic transformation of breast epithelial cells. Proceedings of the National Academy of Sciences of the United States of America, 100(20), 11606–11611.

    Article  PubMed  CAS  Google Scholar 

  148. Yu, J., Yu, J., Rhodes, D. R., et al. (2007). A polycomb repression signature in metastatic prostate cancer predicts cancer outcome. Cancer Research, 67(22), 10657–10663.

    Article  PubMed  CAS  Google Scholar 

  149. Daly, S. B., Urquhart, J. E., Hilton, E., et al. (2010). Mutations in HPSE2 cause urofacial syndrome. Am J Human Gen, 86(6), 963–969.

    Article  CAS  Google Scholar 

  150. Pang, J., Zhang, S., Yang, P., et al. (2010). Loss-of-function mutations in HPSE2 cause the autosomal recessive urofacial syndrome. Am J Human Gen, 86(6), 957–962.

    Article  CAS  Google Scholar 

  151. Simizu, S., Ishida, K., Wierzba, M. K., et al. (2004). Secretion of Heparanase Protein Is Regulated by Glycosylation in Human Tumor Cell Lines. The Journal of Biological Chemistry, 279(4), 2697–2703.

    Article  PubMed  CAS  Google Scholar 

  152. Lai, N. S., Simizu, S., Morisaki, D., et al. (2008). Requirement of the conserved, hydrophobic C-terminus region for the activation of heparanase. Experimental Cell Research, 314(15), 2834–2845.

    Article  PubMed  CAS  Google Scholar 

  153. Simizu, S., Suzuki, T., Muroi, M., et al. (2007). Involvement of disulfide bond formation in the activation of heparanase. Cancer Research, 67(16), 7841–7849.

    Article  PubMed  CAS  Google Scholar 

  154. Hulett, M. D., Hornby, J. R., Ohms, S. J., et al. (2000). Identification of active-site residues of the pro-metastatic endoglycosidase heparanase. Biochemistry, 39(51), 15659–15667.

    Article  PubMed  CAS  Google Scholar 

  155. Ochoa, B. (2004). Can a congenital dysfunctional bladder be diagnosed from a smile? The Ochoa syndrome updated. Pediatric Nephrology, 19(1), 6–12.

    Article  PubMed  Google Scholar 

  156. Bell-McGuinn, K. M., Garfall, A. L., Bogyo, M., et al. (2007). Inhibition of cysteine cathepsin protease activity enhances chemotherapy regimens by decreasing tumor growth and invasiveness in a mouse model of multistage cancer. Cancer Research, 67(15), 7378–7385.

    Article  PubMed  CAS  Google Scholar 

  157. Higgins, W. J., Fox, D. M., Kowalski, P. S., et al. (2010). Heparin enhances serpin inhibition of the cysteine protease cathepsin L. The Journal of Biological Chemistry, 285(6), 3722–3729.

    Article  PubMed  CAS  Google Scholar 

  158. Zcharia, E., Metzger, S., Chajek-ShaulL, T., et al. (2004). Transgenic expression of mammalian heparanase uncovers physiological functions of heparan sulfate in tissue morphogenesis, vascularization, and feeding behavior. The FASEB Journal, 18(2), 252–263.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from the Israel Science Foundation (593/10); National Cancer Institute, NIH (RO1-CA106456); the Israel Cancer Research Fund (ICRF); and the Ministry of Science and Technology of the State of Israel and the German Cancer Research Center (DKFZ). I. Vlodavsky is a Research Professor at the ICRF. We thank Professor B. Casu (‘Ronzoni’ Institute, Milan, Italy), Dr. C. Pisano and Dr. S. Penco (Sigma-Tau, Rome, Italy) for kindly providing glycol-split species of heparin (compound SST0001) and for their continuous support and collaboration. We gratefully acknowledge the contribution, motivation, and assistance of the research teams in the Cancer and Vascular Biology Research Center of the Rappaport Faculty of Medicine (Technion, Haifa) and the Hadassah-Hebrew University Medical Center (Jerusalem, Israel).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Israel Vlodavsky.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Arvatz, G., Shafat, I., Levy-Adam, F. et al. The heparanase system and tumor metastasis: is heparanase the seed and soil?. Cancer Metastasis Rev 30, 253–268 (2011). https://doi.org/10.1007/s10555-011-9288-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10555-011-9288-x

Keywords

Navigation