Skip to main content
Log in

Impact of Cardiac Motion on coronary artery calcium scoring using a virtual non-iodine algorithm on photon-counting detector CT: a dynamic phantom study

  • Original Paper
  • Published:
The International Journal of Cardiovascular Imaging Aims and scope Submit manuscript

Abstract

This study assessed the impact of cardiac motion and in-vessel attenuation on coronary artery calcium (CAC) scoring using virtual non-iodine (VNI) against virtual non-contrast (VNC) reconstructions on photon-counting detector CT. Two artificial vessels containing calcifications and different in-vessel attenuations (500, 800HU) were scanned without (static) and with cardiac motion (60, 80, 100 beats per minute [bpm]). Images were post-processed using a VNC and VNI algorithm at 70 keV and quantum iterative reconstruction (QIR) strength 2. Calcium mass, Agatston scores, cardiac motion susceptibility (CMS)-indices were compared to physical mass, static scores as well as between reconstructions, heart rates and in-vessel attenuations. VNI scores decreased with rising heart rate (p < 0.01) and showed less underestimation than VNC scores (p < 0.001). Only VNI scores were similar to the physical mass at static measurements, and to static scores at 60 bpm. Agatston scores using VNI were similar to static scores at 60 and 80 bpm. Standard deviation of CMS-indices was lower for VNI-based than for VNC-based CAC scoring. VNI scores were higher at 500 than 800HU (p < 0.001) and higher than VNC scores (p < 0.001) with VNI scores at 500 HU showing the lowest deviation from the physical reference. VNI-based CAC quantification is influenced by cardiac motion and in-vessel attenuation, but least when measuring Agatston scores, where it outperforms VNC-based CAC scoring.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data Availability

The datasets of this study are available from the corresponding author on reasonable request.

References

  1. van der Werf NR, van Gent M, Booij R, Bos D, van der Lugt A, Budde RPJ, Greuter MJW, van Straten MD (2021) Dose reduction in Coronary Artery Calcium Scoring using mono-energetic images from reduced Tube Voltage Dual-Source Photon-Counting CT Data: a dynamic Phantom Study. Diagnostics 11. https://doi.org/10.3390/diagnostics11122192

  2. Schwartz FR, Daubert MA, Molvin L, Ramirez-Giraldo JC, Samei E, Marin D, Tailor TD (2023) Coronary Artery Calcium Evaluation Using New Generation Photon-Counting Computed Tomography Yields Lower Radiation Dose Compared With Standard Computed Tomography. J. Thorac. Imaging 38

  3. Graafen D, Emrich T, Halfmann MC, Mildenberger P, Düber C, Yang Y, Othman AE, O’ Doherty J, Müller L, Kloeckner R (2022) Dose Reduction and Image Quality in Photon-Counting Detector High-Resolution Computed Tomography of the Chest: Routine Clinical Data. J. Thorac. Imaging 37

  4. Emrich T, O’Doherty J, Schoepf UJ, Suranyi P, Aquino G, Kloeckner R, Halfmann MC, Allmendinger T, Schmidt B, Flohr T et al Reduced Iodinated contrast Media Administration in Coronary CT Angiography on a clinical photon-counting detector CT system: a Phantom Study using a dynamic circulation model. Invest Radiol. 9900

  5. Higashigaito K, Mergen V, Eberhard M, Jungblut L, Hebeisen M, Rätzer S, Zanini B, Kobe A, Martini K, Euler A et al (2023) CT angiography of the Aorta using photon-counting detector CT with reduced contrast media volume. Radiol Cardiothorac Imaging 5:e220140. https://doi.org/10.1148/ryct.220140

    Article  PubMed  PubMed Central  Google Scholar 

  6. Mergen V, Sartoretti T, Baer-Beck M, Schmidt B, Petersilka M, Wildberger JE, Euler A, Eberhard M, Alkadhi H (2022) Ultra-High-Resolution Coronary CT Angiography With Photon-Counting Detector CT: Feasibility and Image Characterization. Invest. Radiol. 57

  7. Decker JA, O’Doherty J, Schoepf UJ, Todoran TM, Aquino GJ, Brandt V, Baruah D, Fink N, Zsarnoczay E, Flohr T et al (2022) Stent Imaging on a clinical dual-source photon-counting detector CT system—impact of Luminal Attenuation and Sharp Kernels on Lumen visibility. Eur Radiol. https://doi.org/10.1007/s00330-022-09283-4

    Article  PubMed  PubMed Central  Google Scholar 

  8. Boccalini S, Si-Mohamed SA, Lacombe H, Diaw A, Varasteh M, Rodesch P-A, Villien M, Sigovan M, Dessouky R, Coulon P et al (2022) First In-Human Results of Computed Tomography Angiography for Coronary Stent Assessment With a Spectral Photon Counting Computed Tomography. Invest. Radiol. 57

  9. Petritsch B, Petri N, Weng AM, Petersilka M, Allmendinger T, Bley TA, Gassenmaier T (2021) Photon-Counting Computed Tomography for Coronary Stent Imaging: In Vitro Evaluation of 28 Coronary Stents. Invest. Radiol. 56

  10. Zsarnoczay E, Fink N, Schoepf UJ, O’Doherty J, Allmendinger T, Hagenauer J, Wolf EV, Griffith JP, Maurovich-Horvat P, Varga-Szemes A et al (2023) Ultra-High Resolution Photon-Counting coronary CT angiography improves coronary stenosis quantification over a wide range of Heart Rates – A Dynamic Phantom Study. Eur J Radiol 161:110746. https://doi.org/10.1016/j.ejrad.2023.110746

    Article  PubMed  Google Scholar 

  11. Sandfort V, Persson M, Pourmorteza A, Noël PB, Fleischmann D, Willemink MJ (2021) Spectral photon-counting CT in Cardiovascular Imaging. J Cardiovasc Comput Tomogr 15:218–225. https://doi.org/10.1016/j.jcct.2020.12.005

    Article  PubMed  Google Scholar 

  12. Schwarz F, Nance JW, Ruzsics B, Bastarrika G, Sterzik A, Schoepf UJ (2012) Quantification of coronary artery calcium on the basis of dual-energy coronary CT angiography. Radiology 264:700–707. https://doi.org/10.1148/radiol.12112455

    Article  PubMed  Google Scholar 

  13. Tummala R, Han D, Friedman J, Hayes S, Thomson L, Gransar H, Slomka P, Rozanski A, Dey D, Berman D (2022) Association between Plaque localization in proximal coronary segments and MACE outcomes in patients with mild CAC: results from the EISNER Study. Am J Prev Cardiol 12:100423. https://doi.org/10.1016/j.ajpc.2022.100423

    Article  PubMed  PubMed Central  Google Scholar 

  14. Vakil P, Wen Z, Lima AS, Weber EJ, Kallianos KG, Elicker BM, Naeger DM, Henry TS, Ordovas KG (2022) Predictive Value of Coronary Artery Calcium in Patients Receiving Computed Tomography Pulmonary Angiography for Suspected Pulmonary Embolism in the Emergency Department. J. Thorac. Imaging 37

  15. Budoff MJ, Young R, Burke G, Jeffrey Carr J, Detrano RC, Folsom AR, Kronmal R, Lima JAC, Liu KJ, McClelland RL et al (2018) Ten-Year Association of Coronary Artery Calcium with atherosclerotic Cardiovascular Disease (ASCVD) events: the multi-ethnic study of atherosclerosis (MESA). Eur Heart J 39:2401–2408. https://doi.org/10.1093/eurheartj/ehy217

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Detrano R, Guerci AD, Carr JJ, Bild DE, Burke G, Folsom AR, Liu K, Shea S, Szklo M, Bluemke DA et al (2008) Coronary calcium as a predictor of coronary events in four racial or ethnic groups. N Engl J Med 358:1336–1345. https://doi.org/10.1056/NEJMoa072100

    Article  CAS  PubMed  Google Scholar 

  17. van Werkhoven JM, Schuijf JD, Gaemperli O, Jukema JW, Kroft LJ, Boersma E, Pazhenkottil A, Valenta I, Pundziute G, de Roos A et al (2009) Incremental prognostic value of Multi-Slice Computed Tomography Coronary Angiography over Coronary Artery Calcium Scoring in patients with suspected coronary artery disease. Eur Heart J 30:2622–2629. https://doi.org/10.1093/eurheartj/ehp272

    Article  CAS  PubMed  Google Scholar 

  18. Leschka S, Scheffel H, Desbiolles L, Plass A, Gaemperli O, Stolzmann P, Genoni M, Luescher T, Marincek B, Kaufmann P et al (2008) Combining dual-source computed Tomography Coronary Angiography and Calcium Scoring: added value for the Assessment of Coronary Artery Disease. Heart 94:1154. https://doi.org/10.1136/hrt.2007.124800

    Article  CAS  PubMed  Google Scholar 

  19. Emrich T, Aquino G, Schoepf UJ, Braun FM, Risch F, Bette SJ, Woznicki P, Decker JA, O’Doherty J, Brandt V et al (2022) Coronary computed tomography angiography–based calcium scoring: in Vitro and in vivo validation of a novel virtual Noniodine Reconstruction Algorithm on a Clinical, First-Generation Dual-Source Photon counting-detector system. Invest Radiol.

  20. van der Werf NR, Booij R, Greuter MJW, Bos D, van der Lugt A, Budde RPJ, van Straten M (2022) Reproducibility of coronary artery calcium quantification on dual-source CT and dual-source photon-counting CT: a dynamic Phantom Study. Int J Cardiovasc Imaging 38:1613–1619. https://doi.org/10.1007/s10554-022-02540-z

    Article  Google Scholar 

  21. Allmendinger T, Nowak T, Flohr T, Klotz E, Hagenauer J, Alkadhi H, Schmidt B (2022) Photon-counting detector CT-Based vascular calcium removal algorithm: Assessment using a Cardiac Motion Phantom. Invest Radiol 57

  22. Achenbach S, Ropers D, Holle J, Muschiol G, Daniel WG, Moshage W (2000) In-Plane coronary arterial motion velocity: measurement with Electron-Beam CT. Radiology 216:457–463. https://doi.org/10.1148/radiology.216.2.r00au19457

    Article  CAS  PubMed  Google Scholar 

  23. Agatston AS, Janowitz WR, Hildner FJ, Zusmer NR, Viamonte M, Detrano R (1990) Quantification of coronary artery calcium using Ultrafast Computed Tomography. J Am Coll Cardiol 15:827–832. https://doi.org/10.1016/0735-1097(90)90282-T

    Article  CAS  PubMed  Google Scholar 

  24. Hoffmann U, Siebert U, Bull-Stewart A, Achenbach S, Ferencik M, Moselewski F, Brady TJ, Massaro JM, O’Donnell CJ (2006) Evidence for lower variability of coronary artery calcium Mineral Mass measurements by Multi-Detector Computed Tomography in a community-based cohort—consequences for Progression Studies. Card Imaging 57:396–402. https://doi.org/10.1016/j.ejrad.2005.12.027

    Article  Google Scholar 

  25. Hong C, Bae KT, Pilgram TK (2003) Coronary artery calcium: accuracy and reproducibility of measurements with multi–detector row CT—Assessment of Effects of different thresholds and quantification methods. Radiology 227:795–801. https://doi.org/10.1148/radiol.2273020369

    Article  PubMed  Google Scholar 

  26. Groen JM, Greuter MJW, Vliegenthart R, Suess C, Schmidt B, Zijlstra F, Oudkerk M (2008) Calcium scoring using 64-Slice MDCT, dual source CT and EBT: a comparative Phantom Study. Int J Cardiovasc Imaging 24:547–556. https://doi.org/10.1007/s10554-007-9282-0

    Article  PubMed  Google Scholar 

  27. Groen JM, Greuter MJ, Schmidt B, Suess C, Vliegenthart R, Oudkerk M (2007) The influence of heart rate, slice thickness, and calcification density on calcium scores using 64-Slice Multidetector computed tomography: a systematic Phantom Study. Invest Radiol 42

  28. Greuter MJW, Groen JM, Nicolai LJ, Dijkstra H, Oudkerk MA (2009) Model for quantitative correction of coronary calcium scores on Multidetector, Dual source, and Electron Beam Computed Tomography for Influences of Linear Motion, Calcification Density, and temporal resolution: a Cardiac Phantom Study. Med Phys 36:5079–5088. https://doi.org/10.1118/1.3213536

    Article  CAS  PubMed  Google Scholar 

  29. van der Werf NR, Willemink MJ, Willems TP, Greuter MJW, Leiner T (2018) Influence of Iterative Reconstruction on coronary calcium scores at multiple heart rates: a Multivendor Phantom Study on State-of-the-art CT Systems. Int J Cardiovasc Imaging 34:947–957. https://doi.org/10.1007/s10554-017-1292-y

    Article  PubMed  Google Scholar 

  30. van der Werf NR, Willemink MJ, Willems TP, Vliegenthart R, Greuter MJW, Leiner T (2018) Influence of Heart Rate on Coronary Calcium Scores: a Multi-Manufacturer Phantom Study. Int J Cardiovasc Imaging 34:959–966. https://doi.org/10.1007/s10554-017-1293-x

    Article  PubMed  Google Scholar 

  31. Hong C, Bae KT, Pilgram TK, Zhu F (2003) Coronary Artery Calcium Quantification at Multi–Detector Row CT: Influence of Heart Rate and Measurement Methods on Interacquisition Variability—Initial Experience. Radiology 228, 95–100, doi:https://doi.org/10.1148/radiol.2281020685

  32. Tigges S, Arepalli CD, Tridandapani S, Oshinski J, Kurz CR, Richer EJ, Chen Z, Stillman AE, Raggi PA (2012) Phantom Study of the Effect of Heart Rate, coronary artery displacement and vessel trajectory on coronary artery calcium score: potential for risk misclassification. J Cardiovasc Comput Tomogr 6:260–267. https://doi.org/10.1016/j.jcct.2012.01.005

    Article  PubMed  Google Scholar 

  33. Becker CR, Hong C, Knez A, Leber A, Bruening R, Schoepf UJ, Reiser MF (2003) Optimal contrast application for Cardiac 4-Detector-row computed Tomography. Invest Radiol 38

  34. Fei X, Du X, Yang Q, Shen Y, Li P, Liao J, Li K (2008) MDCT Coronary Angiography: Phantom Study of Effects of Vascular attenuation on detection of coronary stenosis. Am J Roentgenol 191:64. https://doi.org/10.2214/AJR.07.2653

    Article  Google Scholar 

  35. Kidoh M, Nakaura T, Nakamura S, Awai K, Utsunomiya D, Namimoto T, Harada K, Yamashita Y (2014) Novel Contrast-Injection Protocol for Coronary computed Tomographic Angiography: Contrast-Injection Protocol customized according to the patient’s time-attenuation response. Heart Vessels 29:149–155. https://doi.org/10.1007/s00380-013-0338-x

    Article  PubMed  Google Scholar 

  36. Hausleiter J, Meyer TS, Martuscelli E, Spagnolo P, Yamamoto H, Carrascosa P, Anger T, Lehmkuhl L, Alkadhi H, Martinoff S et al (2012) Image quality and Radiation exposure with prospectively ECG-Triggered Axial scanning for coronary CT angiography: the Multicenter, Multivendor, Randomized PROTECTION-III Study. JACC Cardiovasc Imaging 5:484–493. https://doi.org/10.1016/j.jcmg.2011.12.017

    Article  PubMed  Google Scholar 

  37. Budoff Matthew J, Hokanson John E, Nasir K, Shaw Leslee J, Kinney Gregory L (2010) Progression of Coronary Artery Calcium Predicts All-Cause Mortality. JACC Cardiovasc Imaging 3:1229–1236. https://doi.org/10.1016/j.jcmg.2010.08.018. Chow David; DeMoss Daniel; Nuguri Vivek; Nabavi Vahid; Ratakonda Raghu

  38. Budoff Matthew J, Young R, Lopez Victor A, Kronmal Richard A, Nasir Khurram; Blumenthal Roger S, Detrano Robert C, Bild Diane E, Guerci Alan D, Liu et al (2013) Kiang;. Progression of Coronary Calcium and Incident Coronary Heart Disease Events. J. Am. Coll. Cardiol. 61, 1231–1239, doi:https://doi.org/10.1016/j.jacc.2012.12.035

  39. Fink N, Zsarnoczay E, Schoepf UJ, Griffith JP III, Wolf EV, O’Doherty J, Suranyi P, Baruah D, Kabakus IM, Ricke J et al (2023) Photon Counting Detector CT-Based Virtual Non-Iodine Reconstruction Algorithm for In Vitro and In Vivo Coronary Artery Calcium Scoring - Impact of Virtual Monoenergetic and Quantum Iterative Reconstructions. Invest. Radiol. in press

Download references

Funding

This study was supported by Siemens Healthineers.

Author information

Authors and Affiliations

Authors

Contributions

NF performed data curation, analysis and interpretation and drafted the manuscript. TE and AVS designed the study, interpreted the data and substantially edited the manuscript. EZ, DP, MVN and JPG advised data reconstruction, supported data analysis and revised the manuscript. JOD, TA and JH advised on the phantom setup, performed phantom data acquisition and revised the manuscript. MCH and JR supported data analysis and interpretation and substantially revised the manuscript. UJS supervised the study conception and data interpretation and substantially edited the manuscript. All authors reviewed the manuscript.

Corresponding author

Correspondence to U. Joseph Schoepf.

Ethics declarations

Competing interests

U. Joseph Schoepf receives institutional research support and / or personal fees from Bayer, Bracco, Elucid Bioimaging, Guerbet, HeartFlow, Inc., Keya Medical, and Siemens. Akos Varga-Szemes receives institutional research support and / or personal fees from Bayer, Elucid Bioimaging and Siemens. Tilman Emrich received a speaker fee and travel support from Siemens Medical Solutions USA Inc, institutional research support by Siemens Healthineers. Jim O’Doherty, Thomas Allmendinger and Junia Hagenauer are employees of Siemens Medical Solutions USA Inc.

Ethics approval

Not applicable.

Consent to participate/to Publish

Not applicable.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Material 1

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fink, N., Zsarnoczay, E., Schoepf, U.J. et al. Impact of Cardiac Motion on coronary artery calcium scoring using a virtual non-iodine algorithm on photon-counting detector CT: a dynamic phantom study. Int J Cardiovasc Imaging 39, 2083–2092 (2023). https://doi.org/10.1007/s10554-023-02912-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10554-023-02912-z

Keywords

Navigation