Skip to main content

Advertisement

Log in

Novel contrast-injection protocol for coronary computed tomographic angiography: contrast-injection protocol customized according to the patient’s time-attenuation response

  • Original Article
  • Published:
Heart and Vessels Aims and scope Submit manuscript

Abstract

We developed a new individually customized contrast-injection protocol for coronary computed tomography (CT) angiography based on the time-attenuation response in a test bolus, and investigated its clinical applicability. We scanned 60 patients with suspected coronary diseases using a 64-detector CT scanner, who were randomly assigned to one of two protocols. In protocol 1 (P1), we estimated the contrast dose to yield a peak aortic attenuation of 400 HU based on the time-attenuation response to a small test-bolus injection (0.3 ml/kg body weight) delivered over 9 s. Then we administered a customized contrast dose over 9 s. In protocol 2 (P2), the dose was tailored to the patient’s body weight; this group received 0.7 ml/kg body weight with an injection duration of 9 s. We compared the two protocols for dose of contrast medium, peak attenuation, variations in attenuation values of the ascending aorta, and the success rate of adequate attenuation (250–350 HU) of the coronary arteries. The contrast dose was significantly smaller in P1 than in P2 (36.9 ± 9.2 vs 43.1 ± 7.0 ml, P < 0.01). Peak aortic attenuation was significantly less under P1 than under P2 (384.1 ± 25.0 vs 413.5 ± 45.7, P < 0.01). The mean variation (standard deviation) of the attenuation values was smaller in P1 than in P2 (25.0 vs 45.7, P < 0.01). The success rate of adequate attenuation of the coronary arteries was significantly higher with P1 than with P2 (85.0 vs 65.8 %, P < 0.01). P1 facilitated a reduction in the contrast dose, reduced the individual variations in peak aortic attenuation, and achieved optimal coronary CT attenuation (250–350 HU) more frequently than P2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Cademartiri F, Mollet NR, Lemos PA, Saia F, Midiri M, de Feyter PJ, Krestin GP (2006) Higher intracoronary attenuation improves diagnostic accuracy in MDCT coronary angiography. AJR Am J Roentgenol 187(4):W430–W433

    Article  PubMed  Google Scholar 

  2. Cademartiri F, Maffei E, Palumbo AA, Malago R, La Grutta L, Meiijboom WB, Aldrovandi A (2008) Influence of intra-coronary enhancement on diagnostic accuracy with 64-slice CT coronary angiography. Eur Radiol 18(3):576–583

    Article  PubMed  Google Scholar 

  3. Horiguchi J, Fujioka C, Kiguchi M, Shen Y, Althoff CE, Yamamoto H, Ito K (2007) Soft and intermediate plaques in coronary arteries: how accurately can we measure CT attenuation using 64-MDCT? AJR Am J Roentgenol 189(4):981–988

    Article  PubMed  Google Scholar 

  4. Fei X, Du X, Yang Q, Shen Y, Li P, Liao J, Li K (2008) 64-MDCT coronary angiography: phantom study of effects of vascular attenuation on detection of coronary stenosis. AJR Am J Roentgenol 191(1):43–49

    Google Scholar 

  5. Yamamuro M, Tadamura E, Kanao S, Wu YW, Tambara K, Komeda M, Toma M (2007) Coronary angiography by 64-detector row computed tomography using low dose of contrast material with saline chaser: influence of total injection volume on vessel attenuation. J Comput Assist Tomogr 31(2):272–280

    Article  PubMed  Google Scholar 

  6. Becker CR, Hong C, Knez A, Leber A, Bruening R, Schoepf UJ, Reiser MF (2003) Optimal contrast application for cardiac 4-detector-row computed tomography. Invest Radiol 38(11):690–694

    Article  PubMed  Google Scholar 

  7. Nakaura T, Awai K, Yauaga Y, Nakayama Y, Oda S, Hatemura M, Nagayoshi Y (2008) Contrast injection protocols for coronary computed tomography angiography using a 64-detector scanner: comparison between patient weight-adjusted- and fixed iodine-dose protocols. Invest Radiol 43(7):512–519

    Article  PubMed  Google Scholar 

  8. Bae KT, Seeck BA, Hildebolt CF, Tao C, Zhu F, Kanematsu M, Woodard PK (2008) Contrast enhancement in cardiovascular MDCT: effect of body weight, height, body surface area, body mass index, and obesity. AJR Am J Roentgenol 190(3):777–784

    Article  PubMed  Google Scholar 

  9. Bae KT (2010) Intravenous contrast medium administration and scan timing at CT: considerations and approaches. Radiology 256(1):32–61

    Article  PubMed  Google Scholar 

  10. Tatsugami F, Kanamoto T, Nakai G, Takeda Y, Morita H, Morinaga I, Yoshikawa S (2010) Reduction of the total injection volume of contrast material with a short injection duration in 64-detector row CT coronary angiography. Br J Radiol 83(985):35–39

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  11. Nakaura T, Awai K, Yanaga Y, Namimoto T, Utsunomiya D, Hirai T, Sugiyama S (2011) Low-dose contrast protocol using the test bolus technique for 64-detector computed tomography coronary angiography. Jpn J Radiol 29(7):457–465

    Article  PubMed  Google Scholar 

  12. Tomizawa N, Nojo T, Akahane M, Torigoe R, Kiryu S, Ohtomo K (2012) Shorter delay time reduces interpatient variability in coronary enhancement in coronary CT angiography using the bolus tracking method with 320-row CT. Int J Cardiovasc Imaging

  13. Takahashi S, Murakami T, Takamura M, Kim T, Hori M, Narumi Y, Nakamura H (2002) Multi-detector row helical CT angiography of hepatic vessels: depiction with dual-arterial phase acquisition during single breath hold. Radiology 222(1):81–88

    Article  PubMed  Google Scholar 

  14. Raman SS, Pojchamarnwiputh S, Muangsomboon K, Schulam PG, Gritsch HA, Lu DS (2006) Utility of 16-MDCT angiography for comprehensive preoperative vascular evaluation of laparoscopic renal donors. AJR Am J Roentgenol 186(6):1630–1638

    Article  PubMed  Google Scholar 

  15. Isogai T, Jinzaki M, Tanami Y, Kusuzaki H, Yamada M, Kuribayashi S (2011) Body weight-tailored contrast material injection protocol for 64-detector row computed tomography coronary angiography. Jpn J Radiol 29(1):33–38

    Article  PubMed  Google Scholar 

  16. Yanaga Y, Awai K, Nakaura T, Oda S, Funama Y, Bae KT, Yamashita Y (2009) Effect of contrast injection protocols with dose adjusted to the estimated lean patient body weight on aortic enhancement at CT angiography. AJR Am J Roentgenol 192(4):1071–1078

    Article  PubMed  Google Scholar 

  17. Zhu X, Zhu Y, Xu H, Tang L, Xu Y (2012) The influence of body mass index and gender on coronary arterial attenuation with fixed iodine load per body weight at dual-source CT coronary angiography. Acta Radiol 53(6):637–642

    Article  PubMed  Google Scholar 

  18. Yanaga Y, Awai K, Nakaura T, Utsunomiya D, Oda S, Hirai T, Yamashita Y (2010) Contrast material injection protocol with the dose adjusted to the body surface area for MDCT aortography. AJR Am J Roentgenol 194(4):903–908

    Article  PubMed  Google Scholar 

  19. Salgado RA, Spinhoven M, De Jongh K, Op de Beeck B, Corthouts B, Parizel PM (2007) Chest MSCT acquisition and injection protocols. JBR-BTR 90(2):97–99

    CAS  PubMed  Google Scholar 

  20. Fleischmann D (2003) Use of high concentration contrast media: principles and rationale-vascular district. Eur J Radiol 45(Suppl 1):S88–S93

    Article  PubMed  Google Scholar 

  21. Weininger M, Barraza JM, Kemper CA, Kalafut JF, Costello P, Schoepf UJ (2011) Cardiothoracic CT angiography: current contrast medium delivery strategies. AJR Am J Roentgenol 196(3):W260–W272

    Article  PubMed  Google Scholar 

  22. Cademartiri F, Mollet NR, van der Lugt A, McFadden EP, Stijnen T, de Feyter PJ, Krestin GP (2005) Intravenous contrast material administration at helical 16-detector row CT coronary angiography: effect of iodine concentration on vascular attenuation. Radiology 236(2):661–665

    Article  PubMed  Google Scholar 

  23. Schoepf UJ, Zwerner PL, Savino G, Herzog C, Kerl JM, Costello P (2007) Coronary CT angiography. Radiology 244(1):48–63

    Article  PubMed  Google Scholar 

  24. Johnson TR, Nikolaou K, Wintersperger BJ, Fink C, Rist C, Leber AW, Knez A (2007) Optimization of contrast material administration for electrocardiogram-gated computed tomographic angiography of the chest. J Comput Assist Tomogr 31(2):265–271

    Article  PubMed  Google Scholar 

  25. Fleischmann D (2003) Use of high-concentration contrast media in multiple-detector-row CT: principles and rationale. Eur Radiol 13(Suppl 5):M14–M20

    Article  PubMed  Google Scholar 

  26. Bae KT, Heiken JP, Brink JA (1998) Aortic and hepatic contrast medium enhancement at CT. Part I. Prediction with a computer model. Radiology 207(3):647–655

    CAS  PubMed  Google Scholar 

  27. Awai K, Hiraishi K, Hori S (2004) Effect of contrast material injection duration and rate on aortic peak time and peak enhancement at dynamic CT involving injection protocol with dose tailored to patient weight. Radiology 230(1):142–150

    Article  PubMed  Google Scholar 

  28. Flinck M, Graden A, Milde H, Flinck A, Hellstrom M, Bjork J, Nyman U (2010) Cardiac output measured by electrical velocimetry in the CT suite correlates with coronary artery enhancement: a feasibility study. Acta Radiol 51(8):895–902

    Article  PubMed  Google Scholar 

  29. Bae KT, Heiken JP, Brink JA (1998) Aortic and hepatic contrast medium enhancement at CT. Part II. Effect of reduced cardiac output in a porcine model. Radiology 207(3):657–662

    CAS  PubMed  Google Scholar 

  30. Platt JF, Reige KA, Ellis JH (1999) Aortic enhancement during abdominal CT angiography: correlation with test injections, flow rates, and patient demographics. AJR Am J Roentgenol 172(1):53–56

    Article  CAS  PubMed  Google Scholar 

  31. Heiken JP, Brink JA, McClennan BL, Sagel SS, Crowe TM, Gaines MV (1995) Dynamic incremental CT: effect of volume and concentration of contrast material and patient weight on hepatic enhancement. Radiology 195(2):353–357

    CAS  PubMed  Google Scholar 

  32. Bae KT (2003) Peak contrast enhancement in CT and MR angiography: when does it occur and why? Pharmacokinetic study in a porcine model. Radiology 227(3):809–816

    Article  PubMed  Google Scholar 

  33. Bassingthwaighte JB (1967) Circulatory transport and the convolution integral. Mayo Clin Proc 42(3):137–154

    CAS  PubMed Central  PubMed  Google Scholar 

  34. Mahnken AH, Rauscher A, Klotz E, Muhlenbruch G, Das M, Gunther RW, Wildberger JE (2007) Quantitative prediction of contrast enhancement from test bolus data in cardiac MSCT. Eur Radiol 17(5):1310–1319

    Article  PubMed  Google Scholar 

  35. Fleischmann D, Hittmair K (1999) Mathematical analysis of arterial enhancement and optimization of bolus geometry for CT angiography using the discrete Fourier transform. J Comput Assist Tomogr 23(3):474–484

    Article  CAS  PubMed  Google Scholar 

Download references

Conflict of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masafumi Kidoh.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kidoh, M., Nakaura, T., Nakamura, S. et al. Novel contrast-injection protocol for coronary computed tomographic angiography: contrast-injection protocol customized according to the patient’s time-attenuation response. Heart Vessels 29, 149–155 (2014). https://doi.org/10.1007/s00380-013-0338-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00380-013-0338-x

Keywords

Navigation