Skip to main content
Log in

Comparison between pre- and post-contrast cardiac MRI cine images: the impact on ventricular volume and strain measurement

  • Original Paper
  • Published:
The International Journal of Cardiovascular Imaging Aims and scope Submit manuscript

Abstract

To explore whether contrast agent administration will affect ventricular volume and strain parameters measured on cardiac magnetic resonance cine images. This prospective study enrolled 88 patients, including 32 patients with cardiac amyloidosis (CA), 32 patients with hypertrophic cardiomyopathy (HCM), and 24 control participants, to perform steady-state free precession (SSFP)-cine imaging twice, respectively before and after contrast agent injection. Indexed left and right ventricular (LV and RV) volume and LV strain parameters (peak radial strain [PRS], peak circumferential strain [PCS], peak longitudinal strain [PLS]) were analyzed and compared between the pre- and post-contrast cine groups. Compared to the group of pre-contrast cine, the end-diastolic volume index (EDVi) and end-systolic volume index (ESVi) significantly increased in the group using post-contrast cine images (all p < 0.05), especially in the right ventricle. After contrast injection, the right ventricular ejection fraction (RVEF) decreased significantly (p < 0.05), while the left ventricular ejection fraction (LVEF) only reduced for patients with HCM (p < 0.05). The PRS (37.1 ± 15.2 vs. 32.0 ± 15.4, p < 0.001) and PCS (− 14.9 ± 4.3 vs. − 14.0 ± 4.1, p < 0.001) derived from post-contrast cine images reduced significantly in all patients and this tendency remained in subgroup analysis except for PCS in the control group. The administration of a contrast agent may influence the measurements of ventricular volume and strain. Acquiring pre-contrast cine images were suggested for patients who required more accurate right ventricle evaluation or precise strain assessment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Arnold JR, McCann GP (2020) Cardiovascular magnetic resonance: applications and practical considerations for the general cardiologist. Heart 106(3):174–181. https://doi.org/10.1136/heartjnl-2019-314856

    Article  CAS  PubMed  Google Scholar 

  2. Patel AR, Kramer CM (2017) Role of Cardiac Magnetic Resonance in the Diagnosis and Prognosis of Nonischemic Cardiomyopathy. JACC Cardiovasc Imaging 10:1180–1193. https://doi.org/10.1016/j.jcmg.2017.08.005

    Article  PubMed  PubMed Central  Google Scholar 

  3. Romano S, Judd RM, Kim RJ, Heitner JF, Shah DJ, Shenoy C, Evans K, Romer B, Salazar P, Farzaneh-Far A (2020) Feature-tracking global longitudinal strain predicts mortality in patients with preserved ejection fraction: a multicenter study. JACC Cardiovasc Imaging 13(4):940–947. https://doi.org/10.1016/j.jcmg.2019.10.004

    Article  PubMed  Google Scholar 

  4. Wan K, Sun J, Yang D, Liu H, Wang J, Cheng W, Zhang Q, Zeng Z, Zhang T, Greiser A, Jolly MP, Han Y, Chen Y (2018) Left Ventricular myocardial deformation on cine MR images: relationship to severity of disease and prognosis in light-chain amyloidosis. Radiology 288(1):73–80. https://doi.org/10.1148/radiol.2018172435

    Article  PubMed  Google Scholar 

  5. Kramer CM, Barkhausen J, Bucciarelli-Ducci C, Flamm SD, Kim RJ, Nagel E (2020) Standardized cardiovascular magnetic resonance imaging (CMR) protocols: 2020 update. J Cardiovasc Magn Reson 22(1):17. https://doi.org/10.1186/s12968-020-00607-1

    Article  PubMed  PubMed Central  Google Scholar 

  6. von Knobelsdorff-Brenkenhoff F, Schunke T, Reiter S, Scheck R, Höfling B, Pilz G (2020) Influence of contrast agent and spatial resolution on myocardial strain results using feature tracking MRI. Eur Radiol 30(11):6099–6108. https://doi.org/10.1007/s00330-020-06971-x

    Article  Google Scholar 

  7. Szűcs A, Kiss AR, Suhai FI, Tóth A, Gregor Z, Horváth M, Czimbalmos C, Csécs I, Dohy Z, Szabó LE, Merkely B, Vágó H (2019) The effect of contrast agents on left ventricular parameters calculated by a threshold-based software module: does it truly matter? Int J Cardiovasc Imaging 35(9):1683–1689. https://doi.org/10.1007/s10554-019-01587-9

    Article  PubMed  PubMed Central  Google Scholar 

  8. Fathi A, Weir-McCall JR, Struthers AD, Lipworth BJ, Houston G (2018) Effects of contrast administration on cardiac MRI volumetric, flow and pulse wave velocity quantification using manual and software-based analysis. Br J Radiol 91(1084):20170717. https://doi.org/10.1259/bjr.20170717

    Article  PubMed  PubMed Central  Google Scholar 

  9. Matthew S, Gandy SJ, Nicholas RS, Waugh SA, Crowe EA, Lerski RA, Dunn MH, Houston JG (2012) Quantitative analysis of cardiac left ventricular variables obtained by MRI at 3 T: a pre- and post-contrast comparison. Br J Radiol 85(1015):e343–e347. https://doi.org/10.1259/bjr/62891785

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Lasalarie JC, Serfaty JM, Carre C, Messika-Zeitoun D, Jeannot C, Schouman-Claeys E, Laissy JP (2007) Accuracy of contrast-enhanced cine-MR sequences in the assessment of left ventricular function: comparison with precontrast cine-MR sequences Results of a bicentric study. Eur Radiol 17(11):2838–2844. https://doi.org/10.1007/s00330-007-0647-5

    Article  PubMed  Google Scholar 

  11. Brigden W (1964) Cardiac amyloidosis. Prog Cardiovasc Dis 7(2):142–150

    Article  CAS  PubMed  Google Scholar 

  12. Falk RH, Alexander KM, Liao R, Dorbala S (2016) AL (Light-Chain) cardiac amyloidosis: a review of diagnosis and therapy. J Am Coll Cardiol 68(12):1323–1341. https://doi.org/10.1016/j.jacc.2016.06.053

    Article  PubMed  Google Scholar 

  13. Gersh BJ, Maron BJ, Bonow RO, Dearani JA, Fifer MA, Link MS, Naidu SS, Nishimura RA, Ommen SR, Rakowski H, Seidman CE, Towbin JA, Udelson JE, Yancy CW, American College of Cardiology Foundation/American Heart Association Task Force on Practice G, American Association for Thoracic S, American Society of E, American Society of Nuclear C, Heart Failure Society of A, Heart Rhythm S, Society for Cardiovascular A, Interventions, Society of Thoracic S (2011) 2011 ACCF/AHA guideline for the diagnosis and treatment of hypertrophic cardiomyopathy: executive summary: a report of the American College of Cardiology Foundation/American Heart Association Task Force on practice guidelines. Circulation 124(24):2761–2796. https://doi.org/10.1161/CIR.0b013e318223e230

    Article  Google Scholar 

  14. Srinivasan S, Kroeker RM, Gabriel S, Plotnik A, Godinez SR, Hu P, Halnon N, Finn JP, Ennis DB (2016) Free-breathing variable flip angle balanced SSFP cardiac cine imaging with reduced SAR at 3T. Magn Reson Med 76(4):1210–1216. https://doi.org/10.1002/mrm.26011

    Article  PubMed  Google Scholar 

  15. Srinivasan S, Ennis DB (2015) Optimal flip angle for high contrast balanced SSFP cardiac cine imaging. Magn Reson Med 73(3):1095–1103. https://doi.org/10.1002/mrm.25228

    Article  PubMed  Google Scholar 

  16. Schulz-Menger J, Bluemke… D, (2013) Standardized image interpretation and post processing in cardiovascular magnetic resonance: Society for Cardiovascular Magnetic Resonance (SCMR) Board of Trustees Task Force on Standardized Post Processing. J Cardiovasc Magn Reson 15(1):35–35

    Article  PubMed  PubMed Central  Google Scholar 

  17. Barber DC, Hose DR (2005) Automatic segmentation of medical images using image registration: diagnostic and simulation applications. J Med Eng Technol 29(2):53–63

    Article  CAS  PubMed  Google Scholar 

  18. Caspar T, Schultz A, Schaeffer M, Labani A, Jeung MY, Jurgens PT, El Ghannudi S, Roy C, Ohana M (2016) 6. Left ventricular function evaluation on a 3T MR scanner with parallel RF transmission technique: prospective comparison of cine sequences acquired before and after gadolinium injection. PLoS ONE 11(9):e0163503. https://doi.org/10.1371/journal.pone.0163503

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Sharma P, Socolow J, Patel S, Pettigrew RI, Oshinski JN (2006) Effect of Gd-DTPA-BMA on blood and myocardial T1 at 1.5T and 3T in humans. J Magn Reson Imaging 23(3):323–330. https://doi.org/10.1002/jmri.20504

    Article  PubMed  PubMed Central  Google Scholar 

  20. Kuetting DLR, Dabir D, Luetkens J, Feisst A, Homsi R, Thomas D, Schild HH, Sprinkart AM (2018) Flip angle optimization for balanced SSFP: Cardiac cine imaging following the application of standard extracellular contrast agent (gadobutrol). J Magn Reson Imaging 47(1):255–261. https://doi.org/10.1002/jmri.25728

    Article  PubMed  Google Scholar 

  21. Xu J, Kim D, Otazo R, Srichai MB, Lim RP, Axel L, Mcgorty KA, Niendorf T, Sodickson DK (2013) Towards a five-minute comprehensive cardiac MR examination using highly accelerated parallel imaging with a 32-element coil array: feasibility and initial comparative evaluation. J Magn Reson Imaging 38(1):180–188

    Article  PubMed  Google Scholar 

  22. Losi MA, Imbriaco M, Canciello G, Pacelli F, Di Nardo C, Lombardi R, Izzo R, Mancusi C, Ponsiglione A, Dell’Aversana S, Cuocolo A, de Simone G, Trimarco B, Barbato E (2020) Left ventricular mass in hypertrophic cardiomyopathy assessed by 2D-echocardiography: validation with magnetic resonance imaging. J Cardiovasc Transl Res 13(2):238–244. https://doi.org/10.1007/s12265-019-09911-3

    Article  PubMed  Google Scholar 

  23. Park EA, Lee W, Kim HK, Chung JW (2015) 2. Effect of papillary muscles and trabeculae on left ventricular measurement using cardiovascular magnetic resonance imaging in patients with hypertrophic cardiomyopathy. Korean J Radiol 16(1):4–12. https://doi.org/10.3348/kjr.2015.16.1.4

    Article  PubMed  PubMed Central  Google Scholar 

  24. Lamacie MM, Houbois CP, Greiser A, Jolly MP, Thavendiranathan P, Wintersperger BJ (2019) Quantification of myocardial deformation by deformable registration-based analysis of cine MRI: validation with tagged CMR. Eur Radiol 29(7):3658–3668. https://doi.org/10.1007/s00330-019-06019-9

    Article  PubMed  Google Scholar 

  25. Wang J, Li W, Sun J, Liu H, Kang Y, Yang D, Yu L, Greiser A, Zhou X, Han Y, Chen Y (2018) Improved segmental myocardial strain reproducibility using deformable registration algorithms compared with feature tracking cardiac MRI and speckle tracking echocardiography. J Magn Reson Imaging 48(2):404–414. https://doi.org/10.1002/jmri.25937

    Article  CAS  PubMed  Google Scholar 

  26. Lamacie MM, Thavendiranathan P, Hanneman K, Greiser A, Jolly MP, Ward R, Wintersperger BJ (2017) Quantification of global myocardial function by cine MRI deformable registration-based analysis: comparison with MR feature tracking and speckle-tracking echocardiography. Eur Radiol 27(4):1404–1415. https://doi.org/10.1007/s00330-016-4514-0

    Article  PubMed  Google Scholar 

  27. Kuetting DL, Dabir D, Homsi R, Sprinkart AM, Luetkens J, Schild HH, Thomas DK (2016) The effects of extracellular contrast agent (Gadobutrol) on the precision and reproducibility of cardiovascular magnetic resonance feature tracking. J Cardiovasc Magn Reson 18(1):30. https://doi.org/10.1186/s12968-016-0249-y

    Article  PubMed  PubMed Central  Google Scholar 

  28. Backhaus SJ, Metschies G, Billing M, Kowallick JT, Gertz RJ, Lapinskas T, Pieske B, Lotz J, Bigalke B, Kutty S, Hasenfuss G, Beerbaum P, Kelle S, Schuster A (2019) Cardiovascular magnetic resonance imaging feature tracking: Impact of training on observer performance and reproducibility. PLoS ONE 14(1):e0210127. https://doi.org/10.1371/journal.pone.0210127

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Dobrovie M, Barreiro-Perez M, Curione D, Symons R, Claus P, Voigt JU, Bogaert J (2019) Inter-vendor reproducibility and accuracy of segmental left ventricular strain measurements using CMR feature tracking. Eur Radiol 29(12):6846–6857. https://doi.org/10.1007/s00330-019-06315-4

    Article  PubMed  Google Scholar 

  30. Kawel-Boehm N, Hetzel SJ, Ambale-Venkatesh B, Captur G, Francois CJ, Jerosch-Herold M, Salerno M, Teague SD, Valsangiacomo-Buechel E, van der Geest RJ, Bluemke DA (2020) 1. Reference ranges (“normal values”) for cardiovascular magnetic resonance (CMR) in adults and children: 2020 update. J Cardiovasc Magn Reson 22(1):87. https://doi.org/10.1186/s12968-020-00683-3

    Article  PubMed  PubMed Central  Google Scholar 

  31. Alfakih K, Plein S, Bloomer T, Jones T, Ridgway J, Sivananthan M (2003) Comparison of right ventricular volume measurements between axial and short axis orientation using steady-state free precession magnetic resonance imaging. J Magn Reson Imaging 18(1):25–32. https://doi.org/10.1002/jmri.10329

    Article  PubMed  Google Scholar 

  32. Clarke CJ, Gurka MJ, Norton PT, Kramer CM, Hoyer AW (2012) Assessment of the accuracy and reproducibility of RV volume measurements by CMR in congenital heart disease. JACC Cardiovasc Imaging 5(1):28–37. https://doi.org/10.1016/j.jcmg.2011.05.007

    Article  PubMed  Google Scholar 

  33. Li X, Shi K, Yang ZG, Guo YK, Huang S, Xia CC, He S, Li ZL, Li C, He Y (2020) Assessing right ventricular deformation in hypertrophic cardiomyopathy patients with preserved right ventricular ejection fraction: a 3.0-T cardiovascular magnetic resonance study. Sci Rep 10(1):1967. https://doi.org/10.1038/s41598-020-58775-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Muller M, Teige F, Schnapauff D, Hamm B, Dewey M (2009) Evaluation of right ventricular function with multidetector computed tomography: comparison with magnetic resonance imaging and analysis of inter- and intraobserver variability. Eur Radiol 19(2):278–289. https://doi.org/10.1007/s00330-008-1146-z

    Article  PubMed  Google Scholar 

  35. Maceira AM, Prasad SK, Khan M, Pennell DJ (2006) Reference right ventricular systolic and diastolic function normalized to age, gender and body surface area from steady-state free precession cardiovascular magnetic resonance. Eur Heart J 27(23):2879–2888. https://doi.org/10.1093/eurheartj/ehl336

    Article  PubMed  Google Scholar 

  36. Dong Y, Pan Z, Wang D, Lv J, Fang J, Xu R, Ding J, Cui X, Xie X, Wang X, Chen MdY, Guo X (2020) Prognostic value of cardiac magnetic resonance-derived right ventricular remodeling parameters in pulmonary hypertension: a systematic review and meta-analysis. Circ Cardiovasc Imaging 13(7):e010568. https://doi.org/10.1161/CIRCIMAGING.120.010568

    Article  PubMed  Google Scholar 

  37. Evaldsson AW, Lindholm A, Jumatate R, Ingvarsson A, Smith GJ, Waktare J, Radegran G, Roijer A, Meurling C, Ostenfeld E (2020) Right ventricular function parameters in pulmonary hypertension: echocardiography vs. cardiac magnetic resonance. BMC Cardiovasc Disord 20(1):259. https://doi.org/10.1186/s12872-020-01548-4

    Article  PubMed  PubMed Central  Google Scholar 

  38. Kemal HS, Kayikcioglu M, Nalbantgil S, Can LH, Mogulkoc N, Kultursay H (2020) Assessment of right ventricular function in patients with pulmonary arterial hypertension-congenital heart disease and repaired and unrepaired defects: Correlation among speckle tracking, conventional echocardiography, and clinical parameters. Anatol J Cardiol 23(5):277–287. https://doi.org/10.14744/AnatolJCardiol.2020.01379

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Lianza AC, Rodrigues ACT, Mercer-Rosa L, Vieira MLC, de Oliveira WAA, Afonso TR, Nomura CH, da Silva JP, da Silva LDF, Szarf G, Tavares GMP, Fischer CH, Morhy SS (2020) Right ventricular systolic function after the cone procedure for Ebstein’s anomaly: comparison between echocardiography and cardiac magnetic resonance. Pediatr Cardiol 41(5):985–995. https://doi.org/10.1007/s00246-020-02347-6

    Article  PubMed  Google Scholar 

  40. Schuuring MJ, Bolmers PP, Mulder BJ, de Bruin-Bon RA, Koolbergen DR, Hazekamp MG, Lagrand WK, De Hert SG, de Beaumont EM, Bouma BJ (2012) Right ventricular function declines after cardiac surgery in adult patients with congenital heart disease. Int J Cardiovasc Imaging 28(4):755–762. https://doi.org/10.1007/s10554-011-9892-4

    Article  PubMed  Google Scholar 

  41. Wheeler M, Leipsic J, Trinh P, Raju R, Alaamri S, Thompson CR, Moss R, Munt B, Kiess M, Grewal J (2015) Right ventricular assessment in adult congenital heart disease patients with right ventricle-to-pulmonary artery conduits. J Am Soc Echocardiogr 28(5):522–532. https://doi.org/10.1016/j.echo.2014.11.016

    Article  PubMed  Google Scholar 

Download references

Funding

This work was supported by Key Research and Development Projects in Sichuan Province, China (Grant number: 2020YFS0123).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection and analysis were performed by Lu Tang, Kaiyue Diao, Qiao Deng and Xi Wu. The first draft of the manuscript was written by Lu Tang, Kaiyue Diao and Qiao Deng. All authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Jiayu Sun.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Ethical approval

This study was approved by the Ethics Committee of West China Hospital of Sichuan University, as revised in 2013 (IRB No.2016 355).

Consent to participate

Informed consent was obtained from all individual participants included in the study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 29 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tang, L., Diao, K., Deng, Q. et al. Comparison between pre- and post-contrast cardiac MRI cine images: the impact on ventricular volume and strain measurement. Int J Cardiovasc Imaging 39, 1055–1064 (2023). https://doi.org/10.1007/s10554-023-02809-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10554-023-02809-x

Keywords

Navigation