Skip to main content
Log in

Arrhythmogenic cardiomyopathy and differential diagnosis with physiological right ventricular remodelling in athletes using cardiovascular magnetic resonance

  • Original Paper
  • Published:
The International Journal of Cardiovascular Imaging Aims and scope Submit manuscript

Abstract

To describe the overlap between structural abnormalities typical of arrhythmogenic right ventricular cardiomyopathy (ARVC) and physiological right ventricular adaptation to exercise and differentiate between pathologic and physiologic findings using CMR. We compared CMR studies of 43 patients (mean age 49 ± 17 years, 49% males, 32 genotyped) with a definitive diagnosis of ARVC with 97 (mean age 45 ± 16 years, 61% males) healthy athletes. CMR was abnormal in 37 (86%) patients with ARVC, but only 23 (53%) fulfilled a major or minor CMR criterion according to the TFC. 7/20 patients who did not fulfil any CMR TFC showed pathological finding (RV RWMA and fibrosis in the LV or LV RWMA). RV was affected in isolation in 17 (39%) patients and 18 (42%) patients showed biventricular involvement. Common RV abnormalities included RWMA (n = 34; 79%), RV dilatation (n = 18; 42%), RV systolic dysfunction (≤ 45%) (n = 17; 40%) and RV LGE (n = 13; 30%). The predominant LV abnormality was LGE (n = 20; 47%). 22/32 (69%) patients exhibited a pathogenic variant: PKP2 (n = 17, 53%), DSP (n = 4, 13%) and DSC2 (n = 1, 3%). Sixteen (16%) athletes exceeded TFC cut-off values for RV volumes. None of the athletes exceeded a RV/LV end-diastolic volume ratio > 1.2, nor fulfilled TFC for impaired RV ejection fraction. The majority (86%) of ARVC patients demonstrate CMR abnormalities suggestive of cardiomyopathy but only 53% fulfil at least one of the CMR TFC. LV involvement is found in 50% cases. In athletes, an RV/LV end-diastolic volume ratio > 1.2 and impaired RV function (RVEF ≤ 45%) are strong predictors of pathology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Corrado D, Link MS, Calkins H (2017) Arrhythmogenic right ventricular cardiomyopathy. N Engl J Med 376(1):61–72. https://doi.org/10.1056/NEJMra1509267

    Article  CAS  PubMed  Google Scholar 

  2. Basso C, Corrado D, Bauce B, Thiene G (2012) Arrhythmogenic right ventricular cardiomyopathy. Circ Arrhythmia Electrophysiol. https://doi.org/10.1161/CIRCEP.111.962035

    Article  Google Scholar 

  3. Wang W, James CA, Calkins H (2018) Diagnostic and therapeutic strategies for arrhythmogenic right ventricular dysplasia/cardiomyopathy patient. EP Europace. https://doi.org/10.1093/europace/euy063

    Article  PubMed  Google Scholar 

  4. Towbin JA, McKenna WJ, Abrams DJ et al (2019) HRS expert consensus statement on evaluation, risk stratification, and management of arrhythmogenic cardiomyopathy. Heart Rhythm. https://doi.org/10.1016/j.hrthm.2019.05.007

    Article  PubMed  Google Scholar 

  5. Marcus FI, Mckenna WJ, Sherrill D et al (2010) Diagnosis of arrhythmogenic right ventricular cardiomyopathy/dysplasia. Publ online. https://doi.org/10.1161/CIRCULATIONAHA.108.840827

    Article  Google Scholar 

  6. Tandri H, Saranathan M, Rodriguez ER et al (2005) Noninvasive detection of myocardial fibrosis in arrhythmogenic right ventricular cardiomyopathy using delayed-enhancement magnetic resonance imaging. J Am Coll Cardiol 45(1):98–103. https://doi.org/10.1016/j.jacc.2004.09.053

    Article  PubMed  Google Scholar 

  7. Te Riele ASJM, Tandri H, Bluemke DA (2014) Arrhythmogenic right ventricular cardiomyopathy (ARVC): cardiovascular magnetic resonance update. J Cardiovasc Magn Reson 16(1):1–15. https://doi.org/10.1186/s12968-014-0050-8

    Article  Google Scholar 

  8. Haugaa KH, Basso C, Badano LP et al (2017) Comprehensive multi-modality imaging approach in arrhythmogenic cardiomyopathy an expert consensus document of the European association of cardiovascular imaging. Eur Heart J Cardiovasc Imaging. https://doi.org/10.1093/ehjci/jew229

    Article  PubMed  PubMed Central  Google Scholar 

  9. Miles C, Finocchiaro G, Papadakis M et al (2019) Sudden death and left ventricular involvement in arrhythmogenic cardiomyopathy. Circulation. https://doi.org/10.1161/CIRCULATIONAHA.118.037230

    Article  PubMed  PubMed Central  Google Scholar 

  10. Corrado D, Perazzolo Marra M, Zorzi A et al (2020) Diagnosis of arrhythmogenic cardiomyopathy: the padua criteria. Int J Cardiol 319:106–114. https://doi.org/10.1016/j.ijcard.2020.06.005

    Article  PubMed  Google Scholar 

  11. Utomi V, Oxborough D, Ashley E et al (2015) The impact of chronic endurance and resistance training upon the right ventricular phenotype in male athletes. Eur J Appl Physiol 115(8):1673–1682. https://doi.org/10.1007/s00421-015-3147-3

    Article  PubMed  Google Scholar 

  12. Zaidi A, Sheikh N, Jongman JK et al (2015) Clinical differentiation between physiological remodeling and arrhythmogenic right ventricular cardiomyopathy in athletes with marked electrocardiographic repolarization anomalies. J Am Coll Cardiol 65(25):2702–2711. https://doi.org/10.1016/j.jacc.2015.04.035

    Article  PubMed  Google Scholar 

  13. D’Ascenzi F, Pisicchio C, Caselli S, Di Paolo FM, Spataro A, Pelliccia A (2017) RV Remodeling in olympic athletes. JACC: Cardiovasc Imaging. https://doi.org/10.1016/j.jcmg.2016.03.017

    Article  PubMed  Google Scholar 

  14. D’Ascenzi F, Solari M, Corrado D, Zorzi A, Mondillo S (2018) Diagnostic differentiation between arrhythmogenic cardiomyopathy and athlete’s heart by using imaging. JACC Cardiovasc Imaging 11(9):1327–1339. https://doi.org/10.1016/j.jcmg.2018.04.031

    Article  PubMed  Google Scholar 

  15. Zaidi A, Ghani S, Sharma R et al (2013) Physiological right ventricular adaptation in elite athletes of African and afro-caribbean origin. Circulation 127(17):1783–1792. https://doi.org/10.1161/CIRCULATIONAHA.112.000270

    Article  PubMed  Google Scholar 

  16. Merghani A, Maestrini V, Rosmini S et al (2017) Prevalence of subclinical coronary artery disease in masters endurance athletes with a low atherosclerotic risk profile. Circulation 136(2):126–137. https://doi.org/10.1161/CIRCULATIONAHA.116.026964

    Article  CAS  PubMed  Google Scholar 

  17. Andersen S, Nielsen-Kudsk JE, Vonk Noordegraaf A, de Man FS (2019) Right ventricular fibrosis. Circulation 139(2):269–285. https://doi.org/10.1161/CIRCULATIONAHA.118.035326

    Article  CAS  PubMed  Google Scholar 

  18. Zghaib T, Ghasabeh MA, Assis FR et al (2018) Regional strain by cardiac magnetic resonance imaging improves detection of right ventricular scar compared with late gadolinium enhancement on a multimodality scar evaluation in patients with arrhythmogenic right ventricular cardiomyopathy. Circ Cardiovasc Imaging 11(9):e007546. https://doi.org/10.1161/CIRCIMAGING.118.007546

    Article  PubMed  PubMed Central  Google Scholar 

  19. Kramer CM, Barkhausen J, Flamm SD, Kim RJ, Nagel E (2013) Standardized cardiovascular magnetic resonance (CMR) protocols 2013 update. J Cardiovasc Magn Reson 15(1):1–10. https://doi.org/10.1186/1532-429X-15-91

    Article  Google Scholar 

  20. Grothues F, Moon JC, Bellenger NG, Smith GS, Klein HU, Pennell DJ (2004) Interstudy reproducibility of right ventricular volumes, function, and mass with cardiovascular magnetic resonance. Am Heart J 147(2):218–223. https://doi.org/10.1016/j.ahj.2003.10.005

    Article  PubMed  Google Scholar 

  21. Db D (1989) A formula to estimate the approximate surface area if height and weight be known. Nutrition 5(5):303–311

    Google Scholar 

  22. Te Riele ASJM, Tandri H, Sanborn DM, Bluemke DA (2015) Noninvasive multimodality imaging in ARVD/C. JACC Cardiovasc Imaging 8(5):597–611. https://doi.org/10.1016/j.jcmg.2015.02.007

    Article  Google Scholar 

  23. Maron BJ, Udelson JE, Bonow RO et al (2015) Eligibility and disqualification recommendations for competitive athletes with cardiovascular abnormalities: task force 3: hypertrophic cardiomyopathy, arrhythmogenic right ventricular cardiomyopathy and other cardiomyopathies, and myocarditis: a scientif. Circulation 132(22):e273–e280. https://doi.org/10.1161/CIR.0000000000000239

    Article  PubMed  Google Scholar 

  24. Pelliccia A, Solberg EE, Papadakis M et al (2019) Recommendations for participation in competitive and leisure time sport in athletes with cardiomyopathies, myocarditis, and pericarditis: position statement of the sport cardiology section of the European association of preventive cardiology (EAPC). Eur Heart J 40(1):19–33. https://doi.org/10.1093/eurheartj/ehy730

    Article  PubMed  Google Scholar 

  25. Lie ØH, Dejgaard LA, Saberniak J et al (2018) Harmful effects of exercise intensity and exercise duration in patients with arrhythmogenic cardiomyopathy. JACC Clin Electrophysiol 4(6):744–753. https://doi.org/10.1016/j.jacep.2018.01.010

    Article  PubMed  Google Scholar 

  26. Sen-Chowdhry S, Syrris P, Prasad SK et al (2008) Left-Dominant arrhythmogenic cardiomyopathy an under-recognized clinical entity. J Am Coll Cardiol 52(25):2175–2187. https://doi.org/10.1016/j.jacc.2008.09.019

    Article  PubMed  Google Scholar 

  27. Rizzo S, Pilichou K, Thiene G, Basso C (2012) The changing spectrum of arrhythmogenic (right ventricular) cardiomyopathy. Cell Tissue Res 348(2):319–323. https://doi.org/10.1007/s00441-012-1402-z

    Article  PubMed  Google Scholar 

  28. DeWitt ES, Chandler SF, Hylind RJ et al (2019) Phenotypic manifestations of arrhythmogenic cardiomyopathy in children and adolescents. J Am Coll Cardiol 74(3):346–358. https://doi.org/10.1016/j.jacc.2019.05.022

    Article  PubMed  PubMed Central  Google Scholar 

  29. Marra MP, Leoni L, Bauce B et al (2012) Imaging study of ventricular scar in arrhythmogenic right ventricular cardiomyopathy comparison of 3d standard electroanatomical voltage mapping and contrast enhanced cardiac magnetic resonance. Circ Arrhythmia Electrophysiol. https://doi.org/10.1161/CIRCEP.111.964635

    Article  Google Scholar 

  30. Te Riele ASJM, James CA, Philips B et al (2013) Mutation-positive arrhythmogenic right ventricular dysplasia/cardiomyopathy: the triangle of dysplasia displaced. J Cardiovasc Electrophysiol 24(12):1311–1320. https://doi.org/10.1111/jce.12222

    Article  Google Scholar 

  31. Quarta G, Husain SI, Flett AS et al (2013) Arrhythmogenic right ventricular cardiomyopathy mimics: role of cardiovascular magnetic resonance. J Cardiovasc Magn Reson 15:16. https://doi.org/10.1186/1532-429X-15-16

    Article  PubMed  PubMed Central  Google Scholar 

  32. Pieroni M, Dello Russo A, Marzo F et al (2009) High prevalence of myocarditis mimicking arrhythmogenic right ventricular cardiomyopathy differential diagnosis by electroanatomic mapping-guided endomyocardial biopsy. J Am Coll Cardiol 53(8):681–689. https://doi.org/10.1016/j.jacc.2008.11.017

    Article  PubMed  Google Scholar 

  33. Bhonsale A, Groeneweg JA, James CA et al (2015) Impact of genotype on clinical course in arrhythmogenic right ventricular dysplasia/cardiomyopathy-associated mutation carriers. Eur Heart J 36(14):847–855. https://doi.org/10.1093/eurheartj/ehu509

    Article  CAS  PubMed  Google Scholar 

  34. Cruz FM, Sanz-Rosa D, Roche-Molina M et al (2015) Exercise triggers ARVC phenotype in mice expressing a disease-causing mutated version of human plakophilin-2. J Am Coll Cardiol 65(14):1438–1450. https://doi.org/10.1016/j.jacc.2015.01.045

    Article  CAS  PubMed  Google Scholar 

  35. van de Schoor FR, Aengevaeren VL, Hopman MTE et al (2016) Myocardial fibrosis in athletes. Mayo Clin Proc 91(11):1617–1631. https://doi.org/10.1016/j.mayocp.2016.07.012

    Article  PubMed  Google Scholar 

  36. Czimbalmos C, Csecs I, Dohy Z et al (2019) Cardiac magnetic resonance based deformation imaging: role of feature tracking in athletes with suspected arrhythmogenic right ventricular cardiomyopathy. Int J Cardiovasc Imaging 35(3):529–538. https://doi.org/10.1007/s10554-018-1478-y

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

Cardiac risk in the young (CRY).

Funding

Gherardo Finocchiaro, Micheal Papadakis and Sanjay Sharma have received research grants from Cardiac Risk in the Young (CRY). Gherardo Finocchiaro has received a research grant from the Charles Wolfson Charitable Trust.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection and analysis were performed by EM, EP and GF. The first draft of the manuscript was written by EM, GF and MP; all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Eleonora Moccia.

Ethics declarations

Competing interests

The authors declare no competing interests.

Conflict of interests

The authors have no relevant financial or non-financial interests to disclose.

Ethics approval

This study was performed in line with the principles of the Declaration of Helsinki. Approval was granted by the National Research Ethics Service and the Southwest-Central Bristol committee.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 26 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Moccia, E., Papatheodorou, E., Miles, C.J. et al. Arrhythmogenic cardiomyopathy and differential diagnosis with physiological right ventricular remodelling in athletes using cardiovascular magnetic resonance. Int J Cardiovasc Imaging 38, 2723–2732 (2022). https://doi.org/10.1007/s10554-022-02684-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10554-022-02684-y

Keywords

Navigation