Skip to main content

Advertisement

Log in

Advanced ultrasound techniques in arterial diseases

  • Review Paper
  • Published:
The International Journal of Cardiovascular Imaging Aims and scope Submit manuscript

Abstract

Ultrasound (US) remains a valuable modality for the assessment of vascular diseases, with conventional sonographic techniques such as grayscale and Doppler US used extensively to assess carotid atherosclerosis and abdominal aortic aneurysms. However, conventional US techniques are inherently limited by factors such as operator dependency and limited field of view. There is an increasing interest in the use of advanced sonographic techniques such as contrast-enhanced US (CEUS) and 3-dimensional (3D) US to mitigate some of these limitations. Clinical applications of advanced sonographic techniques include surveillance of abdominal aortic aneurysm, post-endovascular aortic repair, and carotid atherosclerotic plaques. Recently published studies have demonstrated that CEUS and 3D US are superior to conventional US and comparable to computed tomography for certain vascular applications. Further research is required to fully validate the application of advanced sonographic techniques in evaluating various atherosclerotic diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Rafailidis V, Li X, Sidhu PS, Partovi S, Staub D (2020) Contrast imaging ultrasound for the detection and characterization of carotid vulnerable plaque. Cardiovasc Diagn Ther 10(4):965–981

    Article  PubMed  PubMed Central  Google Scholar 

  2. Fenster A, Parraga G, Bax J (2011) Three-dimensional ultrasound scanning. Interface. Focus 1(4):503–519. https://doi.org/10.1098/rsfs.2011.0019

    Article  Google Scholar 

  3. Nighoghossian N, Derex L, Douek P (2005) The vulnerable carotid artery plaque: current imaging methods and new perspectives. Stroke 36(12):2764–2771. https://doi.org/10.1161/01.STR.0000190895.51934.43

    Article  PubMed  Google Scholar 

  4. Sidhu PS, Allan PL, Cattin F, Cosgrove DO, Davies AH, Do DD et al (2006) Diagnostic efficacy of SonoVue, a second generation contrast agent, in the assessment of extracranial carotid or peripheral arteries using colour and spectral Doppler ultrasound: a multicentre study. Br J Radiol 79(937):44–51. https://doi.org/10.1259/bjr/23954854

    Article  CAS  PubMed  Google Scholar 

  5. ten Kate GL, van Dijk AC, van den Oord SC, Hussain B, Verhagen HJ, Sijbrands EJ et al (2013) Usefulness of contrast-enhanced ultrasound for detection of carotid plaque ulceration in patients with symptomatic carotid atherosclerosis. Am J Cardiol 112(2):292–298. https://doi.org/10.1016/j.amjcard.2013.03.028

    Article  PubMed  Google Scholar 

  6. Schinkel AFL, Bosch JG, Staub D, Adam D, Feinstein SB (2020) Contrast-enhanced ultrasound to assess carotid intraplaque neovascularization. Ultrasound Med Biol 46(3):466–478. https://doi.org/10.1016/j.ultrasmedbio.2019.10.020

    Article  PubMed  Google Scholar 

  7. Mantella LE, Colledanchise KN, Hétu MF, Feinstein SB, Abunassar J, Johri AM (2019) Carotid intraplaque neovascularization predicts coronary artery disease and cardiovascular events. Eur Heart J Cardiovasc Imaging 20(11):1239–1247. https://doi.org/10.1093/ehjci/jez070

    Article  PubMed  PubMed Central  Google Scholar 

  8. Huang R, DeMarco JK, Ota H, Macedo TA, Abdelmoneim SS, Huston J 3rd et al (2021) Prognostic value of intraplaque neovascularization detected by carotid contrast-enhanced ultrasound in patients undergoing stress echocardiography. J Am Soc Echocardiogr 34(6):614–624. https://doi.org/10.1016/j.echo.2020.12.016

    Article  PubMed  Google Scholar 

  9. Keisler B, Carter C (2015) Abdominal aortic aneurysm. Am Fam Physician 91(8):538–543

    PubMed  Google Scholar 

  10. Beales L, Wolstenhulme S, Evans JA, West R, Scott DJA (2011) Reproducibility of ultrasound measurement of the abdominal aorta. Br J Surg 98(11):1517–1525. https://doi.org/10.1002/bjs.7628

    Article  CAS  PubMed  Google Scholar 

  11. Ghulam QM, Kilaru S, Ou SS, Sillesen H (2020) Clinical validation of three-dimensional ultrasound for abdominal aortic aneurysm. J Vasc Surg 71(1):180–188. https://doi.org/10.1016/j.jvs.2019.03.066

    Article  PubMed  Google Scholar 

  12. Bredahl K, Sandholt B, Lönn L, Rouet L, Ardon R, Eiberg JP et al (2015) Three-dimensional ultrasound evaluation of small asymptomatic abdominal aortic aneurysms. Eur J Vasc Endovasc Surg 49(3):289–296. https://doi.org/10.1016/j.ejvs.2014.12.022

    Article  CAS  PubMed  Google Scholar 

  13. Ghulam Q, Bredahl K, Rouet L, Sillesen H, Eiberg J (2021) Three-dimensional ultrasound improves identification of patients with abdominal aortic aneurysms reaching the threshold for repair. J Vasc Surg 74(5):1644–1650. https://doi.org/10.1016/j.jvs.2021.04.036

    Article  PubMed  Google Scholar 

  14. Kontopodis N, Pantidis D, Dedes A, Daskalakis N, Ioannou CV (2016) The – Not So – Solid 5.5 cm threshold for abdominal aortic aneurysm repair: facts, misinterpretations, and future directions. Front Surg 3:1. https://doi.org/10.3389/fsurg.2016.00001

    Article  PubMed  PubMed Central  Google Scholar 

  15. Lindquist Liljeqvist M, Hultgren R, Gasser TC, Roy J (2016) Volume growth of abdominal aortic aneurysms correlates with baseline volume and increasing finite element analysis-derived rupture risk. J Vasc Surg 63(6):1434-1442.e3. https://doi.org/10.1016/j.jvs.2015.11.051

    Article  PubMed  Google Scholar 

  16. Long A, Rouet L, Debreuve A, Ardon R, Barbe C, Becquemin JP et al (2013) Abdominal aortic aneurysm imaging with 3-D ultrasound: 3-D-based maximum diameter measurement and volume quantification. Ultrasound Med Biol 39(8):1325–1336. https://doi.org/10.1016/j.ultrasmedbio.2013.03.008

    Article  CAS  PubMed  Google Scholar 

  17. Ghulam QM, Bredahl KK, Lönn L, Rouet L, Sillesen HH, Eiberg JP (2017) Follow-up on small abdominal aortic aneurysms using three dimensional ultrasound: volume versus diameter. Eur J Vasc Endovasc Surg 54(4):439–445. https://doi.org/10.1016/j.ejvs.2017.06.016

    Article  CAS  PubMed  Google Scholar 

  18. Fillinger MF, Marra SP, Raghavan ML, Kennedy FE (2003) Prediction of rupture risk in abdominal aortic aneurysm during observation: wall stress versus diameter. J Vasc Surg 37(4):724–732. https://doi.org/10.1067/mva.2003.213

    Article  PubMed  Google Scholar 

  19. van Disseldorp EM, Petterson NJ, Rutten MC, van de Vosse FN, van Sambeek MR, Lopata RG (2016) Patient specific wall stress analysis and mechanical characterization of abdominal aortic aneurysms using 4D ultrasound. Eur J Vasc Endovasc Surg 52(5):635–642. https://doi.org/10.1016/j.ejvs.2016.07.088

    Article  PubMed  Google Scholar 

  20. van Disseldorp EMJ, van Dronkelaar JJ, Pluim JPW, van de Vosse FN, van Sambeek MRHM, Lopata RGP (2020) Ultrasound based wall stress analysis of abdominal aortic aneurysms using multiperspective imaging. Eur J Vasc Endovasc Surg 59(1):81–91. https://doi.org/10.1016/j.ejvs.2019.01.026

    Article  PubMed  Google Scholar 

  21. Kapetanios D, Kontopodis N, Mavridis D, McWilliams RG, Giannoukas AD, Antoniou GA (2019) Meta-analysis of the accuracy of contrast-enhanced ultrasound for the detection of endoleak after endovascular aneurysm repair. J Vasc Surg 69(1):280-294.e6. https://doi.org/10.1016/j.jvs.2018.07.044

    Article  PubMed  Google Scholar 

  22. Guo Q, Zhao J, Huang B, Yuan D, Yang Y, Zeng G et al (2016) A systematic review of ultrasound or magnetic resonance imaging compared with computed tomography for endoleak detection and aneurysm diameter measurement after endovascular aneurysm repair. J Endovasc Ther 23(6):936–943. https://doi.org/10.1177/1526602816664878

    Article  PubMed  Google Scholar 

  23. Harky A, Zywicka E, Santoro G, Jullian L, Joshi M, Dimitri S (2019) Is contrast-enhanced ultrasound (CEUS) superior to computed tomography angiography (CTA) in detection of endoleaks in post-EVAR patients? A systematic review and meta-analysis. J Ultrasound 22(1):65–75. https://doi.org/10.1007/s40477-019-00364-7

    Article  PubMed  PubMed Central  Google Scholar 

  24. Bredahl K, Long A, Taudorf M, Lonn L, Rouet L, Ardon R et al (2013) Volume estimation of the aortic sac after EVAR using 3-D ultrasound-A novel, accurate and promising technique. Eur J Vasc Endovasc Surg 45(5):450–456. https://doi.org/10.1016/j.ejvs.2012.12.018

    Article  CAS  PubMed  Google Scholar 

  25. Arsicot M, Lathelize H, Martinez R, Marchand E, Picquet J, Enon B (2014) Follow-up of aortic stent grafts: comparison of the volumetric analysis of the aneurysm sac by ultrasound and CT. Ann Vasc Surg 28(7):1618–1628. https://doi.org/10.1016/j.avsg.2014.03.034

    Article  PubMed  Google Scholar 

  26. Abbas A, Hansrani V, Sedgwick N, Ghosh J, McCollum CN (2014) 3D contrast enhanced ultrasound for detecting endoleak following endovascular aneurysm repair (EVAR). Eur J Vasc Endovasc Surg 47(5):487–492. https://doi.org/10.1016/j.ejvs.2014.02.002

    Article  CAS  PubMed  Google Scholar 

  27. Lowe C, Abbas A, Rogers S, Smith L, Ghosh J, McCollum C (2017) Three-dimensional contrast-enhanced ultrasound improves endoleak detection and classification after endovascular aneurysm repair. J Vasc Surg 65(5):1453–1459. https://doi.org/10.1016/j.jvs.2016.10.082

    Article  PubMed  Google Scholar 

  28. Schinkel AF, van den Oord SC, van der Steen AF, van Laar JA, Sijbrands EJ (2014) Utility of contrast-enhanced ultrasound for the assessment of the carotid artery wall in patients with Takayasu or giant cell arteritis. Eur Heart J Cardiovasc Imaging 15(5):541–546. https://doi.org/10.1093/ehjci/jet243

    Article  PubMed  Google Scholar 

  29. Giordana P, Baqué-Juston MC, Jeandel PY, Mondot L, Hirlemann J, Padovani B et al (2011) Contrast-enhanced ultrasound of carotid artery wall in Takayasu disease: First evidence of application in diagnosis and monitoring of response to treatment. Circulation 124(2):245–247. https://doi.org/10.1161/CIRCULATIONAHA.110.006668

    Article  CAS  PubMed  Google Scholar 

  30. Li C, Ma L, Huang L, Han H, Jiang L, Wang W (2020) Use of contrast-enhanced ultrasound for detecting the disease activity of the carotid artery in takayasu arteritis. Adv Ultrasound Diagn Ther 4(3):189–194

    Article  Google Scholar 

  31. Zhao C, Yu D, Kang K, Liu Y, Li S, Wang Z et al (2019) Role of contrast-enhanced ultrasound sonography in the medical diagnostics of the disease activity in patients with takayasu arteritis. IEEE Access 7:23240–23248. https://doi.org/10.1109/ACCESS.2019.2896386

    Article  Google Scholar 

  32. Huang Y, Ma X, Li M, Dong H, Wan Y, Zhu J (2019) Carotid contrast-enhanced ultrasonographic assessment of disease activity in Takayasu arteritis. Eur Heart J Cardiovasc Imaging 20(7):789–795. https://doi.org/10.1093/ehjci/jey197

    Article  PubMed  Google Scholar 

  33. Germanò G, Macchioni P, Possemato N, Boiardi L, Nicolini A, Casali M et al (2017) Contrast-enhanced ultrasound of the carotid artery in patients with large vessel vasculitis: correlation with positron emission tomography findings. Arthritis Care Res Hoboken 69(1):143–149. https://doi.org/10.1002/acr.22906

    Article  PubMed  Google Scholar 

  34. Li ZQ, Zheng ZH, Ding J, Li XF, Zhao YF, Kang F et al (2019) Contrast-enhanced ultrasonography for monitoring arterial inflammation in takayasu arteritis. J Rheumatol 46(6):616–622. https://doi.org/10.3899/jrheum.180701

    Article  CAS  PubMed  Google Scholar 

  35. Wang Y, Wang YH, Tian XP, Wang HY, Li J, Ge ZT et al (2020) Contrast-enhanced ultrasound for evaluating arteritis activity in Takayasu arteritis patients. Clin Rheumatol 39(4):1229–1235

    Article  PubMed  Google Scholar 

  36. Bergner R, Splitthoff J, Wadsack D (2022) Use of contrast-enhanced ultrasound sonography in giant cell arteritis: a proof-of-concept study. Ultrasound Med Biol 48(1):143–148. https://doi.org/10.1016/j.ultrasmedbio.2021.09.019

    Article  PubMed  Google Scholar 

  37. Ma LY, Li CL, Ma LL, Cui XM, Dai XM, Sun Y et al (2019) Value of contrast-enhanced ultrasonography of the carotid artery for evaluating disease activity in Takayasu arteritis. Arthritis Res Ther 21(1):24. https://doi.org/10.1186/s13075-019-1813-2

    Article  PubMed  PubMed Central  Google Scholar 

  38. Jois RN, Gaffney K, Marshall T, Scott DGI (2004) Chronic periaortitis. Rheumatology 43(11):1441–1446. https://doi.org/10.1093/rheumatology/keh326

    Article  CAS  PubMed  Google Scholar 

  39. Steubl D, Thürmel K, Moog P, Essler M, Heemann U, Friedrich Stock K (2013) Comparison of fluorine-18-deoxyglucose positron emission tomography/computed tomography and contrast-enhanced ultrasound in a patient with chronic periaortitis. Vasa 42(5):370–374. https://doi.org/10.1024/0301-1526/a000303

    Article  PubMed  Google Scholar 

  40. Gennari M, Annoni A, Agrifoglio M (2016) Undiagnosed stanford type A aortic dissection: a rare survival report. Int J Cardiovasc Imaging 32:659–660. https://doi.org/10.1007/s10554-015-0823-7

    Article  PubMed  Google Scholar 

  41. Mohr-Kahaly S, Erbel R, Steller D, Börner N, Drexler M, Meyer J (1986) Aortic dissection detected by transoesophageal echocardiography. Int J Cardiac Imaging 2:31–35. https://doi.org/10.1007/BF01553934

    Article  Google Scholar 

  42. Zhang J, Ong CC, Teoh KLK, Teo LLS (2016) Triple-barrelled aortic dissection with Stanford type A morphology. Int J Cardiovasc Imaging 32:999–1000. https://doi.org/10.1007/s10554-016-0861-9

    Article  PubMed  Google Scholar 

  43. Kimura BJ, Phan JN, Housman LB (1999) Utility of contrast echocardiography in the diagnosis of aortic dissection. J Am Soc Echocardiogr 12(2):155–159. https://doi.org/10.1016/S0894-7317(99)70128-8

    Article  CAS  PubMed  Google Scholar 

  44. Abdulmalik A, Cohen G (2007) The use of echocardiographic contrast-enhanced rapid diagnosis of ruptured aortic dissection with transthoracic echocardiography. J Am Soc Echocardiogr 20(11):13175–7. https://doi.org/10.1016/j.echo.2007.03.014

    Article  Google Scholar 

  45. Lv Q, Wu Y, Wang M (2017) The diagnostic value of contrast enhanced ultrasound in acute aortic dissection. Ultrasound Med Biol 43(suppl 1):S50. https://doi.org/10.1016/j.ultrasmedbio.2017.08.1107

    Article  Google Scholar 

  46. Evangelista A, Avegliano G, Aguilar R, Cuellar H, Igual A, Gonzalez-Alujas T et al (2010) Impact of contrast-enhanced echocardiography on the diagnostic algorithm of acute aortic dissection. Eur Heart J 31(4):472–479. https://doi.org/10.1093/eurheartj/ehp505

    Article  PubMed  Google Scholar 

  47. Clevert DA, Horng A, Clevert DA, Jung EM, Sommer WH, Reiser M (2009) Contrast-enhanced ultrasound versus conventional ultrasound and MS-CT in the diagnosis of abdominal aortic dissection. Clin Hemorheol Microcirc 43(1–2):129–139. https://doi.org/10.3233/CH-2009-1227

    Article  PubMed  Google Scholar 

Download references

Funding

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sasan Partovi.

Ethics declarations

Conflict of interest

The author declares that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, X., Cokkinos, D., Gadani, S. et al. Advanced ultrasound techniques in arterial diseases. Int J Cardiovasc Imaging 38, 1711–1721 (2022). https://doi.org/10.1007/s10554-022-02558-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10554-022-02558-3

Keywords

Navigation