Skip to main content
Log in

How to get the optimal defibrillation lead parameters using myocardial perfusion scintigraphy in patients with coronary artery disease

  • Original Paper
  • Published:
The International Journal of Cardiovascular Imaging Aims and scope Submit manuscript

Abstract

The conventional criteria for a defibrillation lead (DL) implantation don’t take into account presence of scar or deep ischemia in the myocardium. This may impair a proper functioning of the DL. We sought to optimize the DL implantation placement using rest myocardial perfusion scintigraphy (MPS), which allow detecting areas of myocardial hypoperfusion (MH). To study the influence of MH and scarring, detected by MPS, on the DL parameters in patients with coronary artery disease (CAD). 69 patients (male—65, age 64.8 ± 7.7 years) with CAD and indications for ICD implantation were enrolled. Two days before ICD implantation all patients underwent MPS at rest. Then patients were divided in 2 groups. In the 1st group DL was implanted considering MPS results: to the septal position, if the most significant MH were detected in the apical segments, and to the apical position, if MH were in the septal segments. In the 2nd group DL was implanted using the conventional approach without considering MPS results. Clinical 12 months follow-up was performed with ICD interrogation. Patients of both groups were comparable by clinical and scintigraphic parameters. In the same time, in the 1st group pacing threshold was lower (p < 0.0001) and ventricle signal amplitude was higher (p < 0.0001) comparing with the 2nd group at all control points. The presence of MH detected by MPS in the area of the DL placement worsens its parameters. The results of MPS in patients with CAD can be useful for optimization of DL placement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

ICD:

Implantable cardioverter-defibrillator

ATP:

Anti-tachycardia pacing

SCD:

Sudden cardiac death

VT:

Ventricular tachycardia

VF:

Ventricular fibrillation

VSA:

Ventricular signal amplitude

DL:

Defibrillation lead

PT:

Pacing threshold

CAD:

Coronary artery disease

MI:

Myocardial infarction

MPS:

Myocardial perfusion scintigraphy

99mTc-MIBI:

99MTc-methoxy-isobutyl-isonitrile

SPECT:

Single-photon emission computed tomography

SRS:

Summed rest score

AF:

Atrial fibrillation

PI:

Pace impedance

SI:

Shock impedance

PET:

Positron emission tomography

References

  1. Epstein AE, DiMarco JP, Ellenbogen KA et al (2013) 2012 ACCF/AHA/HRS Focused update incorporated into the ACCF/AHA/HRS 2008 guidelines for device-based therapy of cardiac rhythm abnormalities. J Am Coll Cardiol. https://doi.org/10.1016/j.jacc.2012.11.007

    Article  PubMed  PubMed Central  Google Scholar 

  2. Bruggeman T, Dahlke D, Chebbo A, Neumann I (2016) Tachycardia detection in modern implantable cardioverter-defibrillators. Herzschrittmacherther Elektrophysiol. https://doi.org/10.1007/s00399-016-0499-z

    Article  Google Scholar 

  3. Zeitler EP, Sanders GD, Singh K et al (2018) Single vs dual chamber implantable cardioverter-defibrillators or programming of implantable cardioverter-defibrillators in patients without a bradycardia pacing indication: systematic review and meta-analysis. Europace. https://doi.org/10.1093/europace/euy183

    Article  PubMed  PubMed Central  Google Scholar 

  4. Friedman PA, Bradley D, Koestler C et al (2014) A prospective randomized trial of single- or dual chamber implantable cardioverter-defibrillators to minimize inappropriate shock risk in primary sudden cardiac death prevention. Europace. https://doi.org/10.1093/europace/euu022

    Article  PubMed  Google Scholar 

  5. Swerdlow CD, Russo AM, Degroot PJ (2007) The dilemma of ICD implant testing. Pacing Clin Electrophysiol 30(5):675–700

    Article  Google Scholar 

  6. Wilkoff BL, Fauchier L, Stiles MK et al (2016) 2015 HRS/EHRA/APHRS/SOLAECE expert consensus statement on optimal implantable cardioverter-defibrillator programming and testing. Europace. https://doi.org/10.1093/europace/euv411

    Article  PubMed  Google Scholar 

  7. Zecchin M, Solimene F, D’Onofrio A et al (2020) Atrial signal amplitude predicts atrial high-rate episodes in implantable cardioverter defibrillator patients: Insights from a large database of remote monitoring transmissions. J Arrhythm. https://doi.org/10.1002/joa3.12319

    Article  PubMed  PubMed Central  Google Scholar 

  8. Amoros-Figueras G, Jorge E, Alonso-Martin C et al (2018) Endocardial infarct scar recognition by myocardial electrical impedance is not influenced by changes in cardiac activation sequence. Heart Rhythm. https://doi.org/10.1016/j.hrthm.2017.11.031

    Article  PubMed  Google Scholar 

  9. Burkland DA, Ganapathy AV, John M et al (2017) Near-field impedance accurately distinguishes among pericardial, intracavitary, and anterior mediastinal position. J Cardiovasc Electrophysiol. https://doi.org/10.1111/jce.13325

    Article  PubMed  Google Scholar 

  10. Powell BD, Asirvatham SJ, Perschbacher DL et al (2012) Noise, artifact and oversensing related inappropriate ICD shock evaluation: ALTITUDE noise study. Pacing Clin Electrophysiol. https://doi.org/10.1111/j.1540-8159.2012.03407.x

    Article  PubMed  Google Scholar 

  11. Pang BJ, Joshi SB, Lui EH et al (2014) Validation of conventional fluoroscopic and ECG criteria for right ventricular pacemaker lead position using cardiac computed tomography. Pacing Clin Electrophysiol. https://doi.org/10.1111/pace.12301

    Article  PubMed  Google Scholar 

  12. Verberne HJ, Acampa W, Anagnostopoulos C et al (2015) EANM procedural guidelines for radionuclide myocardial perfusion imaging with SPECT and SPECT/CT: 2015 revision. Eur J Nucl Med Mol Imaging 42(12):1929–1940. https://doi.org/10.1007/s00259-015-3139-x

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Amit G, Wang J, Connolly SJ et al (2016) Apical versus non-apical lead: is ICD lead position important for successful defibrillation? J Cardiovasc Electrophysiol. https://doi.org/10.1111/jce.12952

    Article  PubMed  Google Scholar 

  14. Bongiorni MG, Burri H, Deharo JC et al (2018) 2018 EHRA expert consensus statement on lead extraction: recommendations on definitions, endpoints, research trial design, and data collection requirements for clinical scientific studies and registries: endorsed by APHRS/HRS/LAHRS. Europace. https://doi.org/10.1093/europace/euy050

    Article  PubMed  Google Scholar 

  15. Boriani G, Merino J, Wright DJ et al (2018) Battery longevity of implantable cardioverter-defibrillators and cardiac resynchronization therapy defibrillators: technical, clinical and economic aspects: An expert review paper from EHRA. J Europace. https://doi.org/10.1093/europace/euy066

    Article  Google Scholar 

  16. von Gunten S, Schaer BA, Yap SC et al (2016) Longevity of implantable cardioverter defibrillators: a comparison among manufacturers and over time. Europace. https://doi.org/10.1093/europace/euv296

    Article  Google Scholar 

  17. Manolis AS, Maounis T, Koulouris S, Vassilikos V (2017) “Real life” longevity of implantable cardioverter-defibrillator devices. Clin Cardiol. https://doi.org/10.1002/clc.22729

    Article  PubMed  PubMed Central  Google Scholar 

  18. Cao J, Gillberg JM, Swerdlow CD (2012) A fully automatic, implantable cardioverter-defibrillator algorithm to prevent inappropriate detection of ventricular tachycardia or fibrillation due to T-wave oversensing in spontaneous rhythm. Heart Rhythm. https://doi.org/10.1016/j.hrthm.2011.11.023

    Article  PubMed  Google Scholar 

  19. Wilson DG, Leventigiannis G, Barr C, Morgan JM (2016) ECG predictors of T wave oversensing in subcutaneous implantable cardioverter defibrillators. Int J Cardiol. https://doi.org/10.1016/j.ijcard.2016.06.128

    Article  PubMed  PubMed Central  Google Scholar 

  20. Sommer A, Kronborg MB, Norgaard BL et al (2016) Multimodality imaging-guided left ventricular lead placement in cardiac resynchronization therapy: a randomized controlled trial. Eur J Heart Fail. https://doi.org/10.1002/ejhf.530

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tariel A. Atabekov.

Ethics declarations

Conflict of interests

None declared. No funds, grants, or other support was received.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Atabekov, T.A., Batalov, R.E., Sazonova, S.I. et al. How to get the optimal defibrillation lead parameters using myocardial perfusion scintigraphy in patients with coronary artery disease. Int J Cardiovasc Imaging 37, 3323–3333 (2021). https://doi.org/10.1007/s10554-021-02308-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10554-021-02308-x

Keywords

Navigation