Skip to main content

Advertisement

Log in

The corrected left ventricular ejection fraction: a potential new measure of ventricular function

  • Original Paper
  • Published:
The International Journal of Cardiovascular Imaging Aims and scope Submit manuscript

Abstract

Left ventricular ejection fraction (LVEF) has a limited role in predicting outlook in heart diseases including heart failure. We quantified the independent geometric factors that determine LVEF using cardiac MRI and sought to provide an improved measure of ventricular function by adjusting for such independent variables. A mathematical model was used to analyse the independent effects of structural variables and myocardial shortening on LVEF. These results informed analysis of cardiac MRI data from 183 patients (53 idiopathic dilated cardiomyopathy (DCM), 36 amyloidosis, 55 hypertensives and 39 healthy controls). Left ventricular volumes, LVEF, wall thickness, internal dimensions and longitudinal and midwall fractional shortening were measured. The modelling demonstrated LVEF increased in a curvilinear manner with increasing mFS and longitudinal shortening and wall thickness but decreased with increasing internal diameter. Controls in the clinical cohort had a mean LVEF 64  ±  7%, hypertensives 66  ±  8%, amyloid 49 ±  16% and DCM 30  ±  11%. The mean end-diastolic wall thickness in controls was 8  ±  1 mm, DCM 8  ±  1 mm, hypertensives 11  ±  3 mm and amyloid 14  ±  3 mm, P < 0.0001). LVEF correlated with absolute wall thickening relative to ventricular size (R2 = 0.766). A regression equation was derived from raw MRI data (R2 = 0.856) and used to ‘correct’ LVEF (EFc) by adjusting the wall thickness and ventricular size to the mean of the control group. Improved quantification of the effects of geometric changes and strain significantly enhances understanding the myocardial mechanics. The EFc resulted in reclassification of a ‘ventricular function’ in some individuals and may provide an improved measure of myocardial performance especially in thick-walled, low-volume ventricles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

Available for senior author upon reasonable request.

Code availability

N/A. Equations provided in Appendix.

Abbreviations

AWT:

Absolute wall thickening

DCM:

Dilated cardiomyopathy

EDWT:

End-diastolic wall thickness

EDV:

End-diastolic volume

ESWT:

End-systolic wall thickness

HFmrEF:

Heart failure with mid-range ejection fraction

HFpEF:

Heart failure with preserved ejection fraction

HFrEF:

Heart failure with reduced ejection fraction

HHD:

Hypertensive heart disease

HTN:

Hypertension

LAS:

Long-axis shortening

LVEF:

Left ventricular ejection fraction

LVIDd:

Left ventricular internal diameter at end-diastole diameter

LVIDs:

Left ventricular internal diameter at end-systole

mFS:

Midwall fractional shortening

rAWT:

Relative absolute wall thickening

RS:

Radial strain

References

  1. Volpi A, De Vita C, Franzosi MG, Geraci E, Maggioni AP, Mauri F et al (1993) Determinants of 6-month mortality in survivors of myocardial infarction after thrombolysis. Results of the GISSI-2 data base. The Ad hoc Working Group of the Gruppo Italiano per lo Studio della Sopravvivenza nell’Infarto Miocardico (GISSI)-2 Data Base. Circulation 88(2):416–429. https://doi.org/10.1161/01.cir.88.2.416

    Article  CAS  PubMed  Google Scholar 

  2. Lam CS, Donal E, Kraigher-Krainer E, Vasan RS (2011) Epidemiology and clinical course of heart failure with preserved ejection fraction. Eur J Heart Fail 13(1):18–28. https://doi.org/10.1093/eurjhf/hfq121

    Article  PubMed  Google Scholar 

  3. Bhatia RS, Tu JV, Lee DS, Austin PC, Fang J, Haouzi A et al (2006) Outcome of heart failure with preserved ejection fraction in a population-based study. N Engl J Med 355(3):260–269. https://doi.org/10.1056/NEJMoa051530

    Article  CAS  PubMed  Google Scholar 

  4. Owan TE, Hodge DO, Herges RM, Jacobsen SJ, Roger VL, Redfield MM (2006) Trends in prevalence and outcome of heart failure with preserved ejection fraction. N Engl J Med 355(3):251–259. https://doi.org/10.1056/NEJMoa052256

    Article  CAS  PubMed  Google Scholar 

  5. Ponikowski P, Voors AA, Anker SD, Bueno H, Cleland JG, Coats AJ et al (2016) ESC guidelines for the diagnosis and treatment of acute and chronic heart failure: The task force for the diagnosis and treatment of acute and chronic heart failure of the European society of cardiology (ESC). Developed with the special contribution of the Heart failure association (HFA) of the ESC. Eur J Heart Fail 18(8):891–975. https://doi.org/10.1002/ejhf.592

    Article  Google Scholar 

  6. Paulus WJ, Tschope C, Sanderson JE, Rusconi C, Flachskampf FA, Rademakers F et al (2007) How to diagnose diastolic heart failure: a consensus statement on the diagnosis of heart failure with normal left ventricular ejection fraction by the heart failure and echocardiography associations of the european society of cardiology. Eur Heart J 28:2539–2550

    Article  Google Scholar 

  7. Kraigher-Krainer E, Shah AM, Gupta DK, Santos A, Claggett B, Pieske B et al (2014) Impaired systolic function by strain imaging in heart failure with preserved ejection fraction. J Am Coll Cardiol 63(5):447–456. https://doi.org/10.1016/j.jacc.2013.09.052

    Article  PubMed  Google Scholar 

  8. Aurigemma GP, Gaasch WH, McLaughlin M, McGinn R, Sweeney A, Meyer TE (1995) Reduced left ventricular systolic pump performance and depressed myocardial contractile function in patients > 65 years of age with normal ejection fraction and a high relative wall thickness. Am J Cardiol 76(10):702–705. https://doi.org/10.1016/s0002-9149(99)80201-x

    Article  CAS  PubMed  Google Scholar 

  9. Vinch CS, Aurigemma GP, Simon HU, Hill JC, Tighe DA, Meyer TE (2005) Analysis of left ventricular systolic function using midwall mechanics in patients > 60 years of age with hypertensive heart disease and heart failure. Am J Cardiol 96(9):1299–1303

    Article  Google Scholar 

  10. Koh YS, Jung HO, Park MW, Baek JY, Yoon SG, Kim PJ et al (2009) Comparison of left ventricular hypertrophy, fibrosis and dysfunction according to various disease mechanisms such as hypertension, diabetes mellitus and chronic renal failure. J Cardiovasc Ultrasound 17(4):127–134

    Article  Google Scholar 

  11. Levy D, Garrison RJ, Savage DD, Kannel WB, Castelli WP (1990) Prognostic implications of echocardiographically determined left ventricular mass in the framingham heart study. N Engl J Med 322(22):1561–1566. https://doi.org/10.1056/NEJM199005313222203

    Article  CAS  PubMed  Google Scholar 

  12. Koren MJ, Devereux RB, Casale PN, Savage DD, Laragh JH (1991) Relation of left ventricular mass and geometry to morbidity and mortality in uncomplicated essential hypertension. Ann Intern Med 114(5):345–352. https://doi.org/10.7326/0003-4819-114-5-345

    Article  CAS  PubMed  Google Scholar 

  13. Maciver DH, Townsend M (2008) A novel mechanism of heart failure with normal ejection fraction. Heart 94(4):446–449. https://doi.org/10.1136/hrt.2006.114082

    Article  CAS  PubMed  Google Scholar 

  14. Maciver DH (2011) A new method for quantification of left ventricular systolic function using a corrected ejection fraction. Eur J Echocardiogr 12(3):228–234. https://doi.org/10.1093/ejechocard/jeq185

    Article  PubMed  Google Scholar 

  15. Stokke TM, Hasselberg NE, Smedsrud MK, Sarvari SI, Haugaa KH, Smiseth OA et al (2017) Geometry as a confounder when assessing ventricular systolic function: comparison between ejection fraction and strain. J Am Coll Cardiol 70(8):942–954. https://doi.org/10.1016/j.jacc.2017.06.046

    Article  PubMed  Google Scholar 

  16. Pennell DJ (2002) Ventricular volume and mass by CMR. J Cardiovasc Magn Reson 4(4):507–513. https://doi.org/10.1081/jcmr-120016389

    Article  PubMed  Google Scholar 

  17. MacIver DH, Adeniran I, Zhang H (2015) Left ventricular ejection fraction is determined by both global myocardial strain and wall thickness. Int J Cardiol Heart Vasc 7:113–118. https://doi.org/10.1016/j.ijcha.2015.03.007

    Article  PubMed  PubMed Central  Google Scholar 

  18. Yin FC, Chan CC, Judd RM (1996) Compressibility of perfused passive myocardium. Am J Physiol 271(5 Pt 2):H1864–H1870. https://doi.org/10.1152/ajpheart.1996.271.5.H1864

    Article  CAS  PubMed  Google Scholar 

  19. Maciver DH (2012) The relative impact of circumferential and longitudinal shortening on left ventricular ejection fraction and stroke volume. Exp Clin Cardiol 17(1):5–11

    PubMed  PubMed Central  Google Scholar 

  20. Rodrigues JC, Rohan S, Dastidar AG, Trickey A, Szantho G, Ratcliffe LE et al (2016) The relationship between left ventricular wall thickness, myocardial shortening, and ejection fraction in hypertensive heart disease: insights from cardiac magnetic resonance imaging. J Clin Hypertens 18(11):1119–1127. https://doi.org/10.1111/jch.12849

    Article  Google Scholar 

  21. Maceira AM, Joshi J, Prasad SK, Moon JC, Perugini E, Harding I et al (2005) Cardiovascular magnetic resonance in cardiac amyloidosis. Circulation 111(2):186–193. https://doi.org/10.1161/01.CIR.0000152819.97857.9D

    Article  PubMed  Google Scholar 

  22. Pozo E, Kanwar A, Deochand R, Castellano JM, Naib T, Pazos-Lopez P et al (2014) Cardiac magnetic resonance evaluation of left ventricular remodelling distribution in cardiac amyloidosis. Heart 100(21):1688–1695. https://doi.org/10.1136/heartjnl-2014-305710

    Article  PubMed  Google Scholar 

  23. Maceira AM, Prasad SK, Khan M, Pennell DJ (2006) Normalized left ventricular systolic and diastolic function by steady state free precession cardiovascular magnetic resonance. J Cardiovasc Magn Reson 8(3):417–426. https://doi.org/10.1080/10976640600572889

    Article  CAS  PubMed  Google Scholar 

  24. Kawel N, Turkbey EB, Carr JJ, Eng J, Gomes AS, Hundley WG et al (2012) Normal left ventricular myocardial thickness for middle-aged and older subjects with steady-state free precession cardiac magnetic resonance: the multi-ethnic study of atherosclerosis. Circ Cardiovasc Imaging 5(4):500–508. https://doi.org/10.1161/CIRCIMAGING.112.973560

    Article  PubMed  PubMed Central  Google Scholar 

  25. MacIver DH, Stephenson RS, Jensen B, Agger P, Sanchez-Quintana D, Jarvis JC et al (2018) The end of the unique myocardial band: Part I. Anatomical considerations. Eur J Cardiothorac Surg 53(1):112–119. https://doi.org/10.1093/ejcts/ezx290

    Article  PubMed  Google Scholar 

  26. de Simone G, Devereux RB, Roman MJ, Ganau A, Saba PS, Alderman MH et al (1994) Assessment of left ventricular function by the midwall fractional shortening/end-systolic stress relation in human hypertension. J Am Coll Cardiol 23(6):1444–1451. https://doi.org/10.1016/0735-1097(94)90390-5

    Article  PubMed  Google Scholar 

  27. de Simone G, Devereux RB (2002) Rationale of echocardiographic assessment of left ventricular wall stress and midwall mechanics in hypertensive heart disease. Eur J Echocardiogr 3(3):192–198. https://doi.org/10.1053/euje.2002.0163

    Article  PubMed  Google Scholar 

  28. Laskey WK, Alomari I, Cox M, Schulte PJ, Zhao X, Hernandez AF et al (2015) Heart rate at hospital discharge in patients with heart failure is associated with mortality and rehospitalization. J Am Heart Association 4(4):e001626

    Article  Google Scholar 

  29. Lam PH, Dooley DJ, Deedwania P, Singh SN, Bhatt DL, Morgan CJ et al (2017) Heart rate and outcomes in hospitalized patients with heart failure with preserved ejection fraction. J Am Coll Cardiol 70(15):1861–1871. https://doi.org/10.1016/j.jacc.2017.08.022

    Article  PubMed  Google Scholar 

  30. MacIver DH, Dayer MJ, Harrison AJ (2013) A general theory of acute and chronic heart failure. Int J Cardiol 165(1):25–34. https://doi.org/10.1016/j.ijcard.2012.03.093

    Article  PubMed  Google Scholar 

  31. Forsythe L, MacIver DH, Johnson C, George K, Somauroo S, Papadakis M et al (2018) The relationship between left ventricular structure and function in the elite senior rugby football league athlete as determined by conventional 2D echocardiography and myocardial strain imaging. Int J Cardiol 261:211–217

    Article  Google Scholar 

  32. MacIver DH (2014) The impact of mitral regurgitation on left ventricular ejection fraction using mathematical modelling. Exp Clin Cardiol 20(9):4994–5008

    Google Scholar 

  33. Rodrigues JC, Dastidar AG, Paton JF, MacIver DH (2016) Precursors of hypertensive heart phenotype develop in healthy adults: an alternative explanation. JACC Cardiovasc Imaging 9(6):762–763. https://doi.org/10.1016/j.jcmg.2015.11.016

    Article  PubMed  Google Scholar 

Download references

Funding

Study was supported by Bristol NIHR Biomedical Research Centre.

Author information

Authors and Affiliations

Authors

Contributions

All authors take responsibility for all aspects of the reliability and freedom from bias of the data presented and their discussed interpretation. DHM was responsible for the conception and design of the work. JCLR, BR, KH and SR collected the clinical data. DHM undertook the mathematical modelling. JCLR wrote the first draft. All authors are responsible for the accuracy of the final document and act as guarantors. All authors gave substantial contributions to interpretation of data, manuscript revisions and for intellectual content. All authors approved the final version published. All authors agreed to be accountable for all aspects of the work in ensuring that questions related to the accuracy or integrity of any part of the work are appropriately investigated and resolved. The scientific guarantor of this publication is Prof David MacIver.

Corresponding author

Correspondence to David H. MacIver.

Ethics declarations

Conflict of interest

JCLR reports speaker’s fees from Sanofi and consultancy fees from NHSX outside the scope of this work. All other authors have no conflicts to declare.

Ethical approval

The local research ethics committee confirmed that this study conformed to the governance arrangements for research ethics committees.

Consent to participate

All subjects provided informed, written consent.

Consent for publication

All authors consent for publication.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

Midwall fractional shortening

Midwall fractional shortening was estimated using the following established [26]:

$${\text{mFS}}\left( \% \right)\, = \,\left( {\left( {{\text{LVIDd}}\, + \,{\text{EDWT}}} \right){-}\left( {{\text{LVIDs}}\, + \,{\text{H}}} \right)} \right)/\left( {{\text{LVIDd}}\, + \,{\text{EDWT}}} \right)\, \times \,{1}00$$

where:

$${\text{H}}\, = \,\left( {\left( {{\text{LVIDd}}\, + \,{\text{EDWT}}} \right)^{{3}} {-}\left( {{\text{LVIDd}}} \right)^{{3}} \, + \,\left( {{\text{LVIDs}}} \right)^{{3}} } \right)^{{{1}/{3}}} {-}{\text{LVIDs}}$$

Regression equations

Multiple linear regression (n = 183) of MRI cohort. D = left ventricular end-diastolic diameter (mm), W = end-diastolic wall thickness (mm), L = end-diastolic left ventricular length (mm), εL = long axis shortening (%), εC = midwall (circumferential) fractional shortening (%). Four statistical models were produced (Eqs. 1, 2, 3, 4). The highest correlation coefficient was obtained using all five input variables (Eq. 1) and the lowest with three variables including longitudinal shortening (Eq. 3):

5 degrees of freedom (D, W, εL, εC, L)

$${\text{EF}}\% \, = \, - 0.{\text{423D}}\, + \,{2}.0{7} {\text{W}} - 0.{648}\varepsilon_{{\text{L}}} - {2}.0{7}\varepsilon_{{\text{C}}} - 0.{\text{174L}}\, + \,{38}.{9},{\text{ R}}^{{2}} \, = \,0.{856},{\text{ p}}\, < \,0.000{1}$$
(1)

4 degrees of freedom (D, W, εL, εC)

$${\text{EF}}\% \, = \, - 0.{\text{577D}}\, + \,{1}.{81} {\text{W}} - 0.{54}0\varepsilon_{{\text{L}}} - {2}.0{7}\varepsilon_{{\text{C}}} \, + \,{33}.{8},{\text{ R}}^{{2}} \, = \,0.{853},{\text{ p}}\, < \,0.000{1}$$
(2)

3 degrees of freedom (D, W, εL)

$${\text{EF}}\% \, = \, - 0.{\text{934D}}\, + \,{1}.{37} {\text{W}} - {2}.{17}\varepsilon_{{\text{L}}} \, + \,{7}0.0,{\text{ R}}^{{2}} \, = \,0.{747},{\text{ p}}\, < \,0.000{1}$$
(3)

3 degrees of freedom (D, W, εC)

$${\text{EF}}\% \, = \, - 0.{\text{629D}}\, + \,{1}.{61} {\text{W}} - {2}.{37}\varepsilon_{{\text{C}}} \, + \,{39}.{8},{\text{ R}}^{{2}} \, = \,0.{848},{\text{ p}}\, < \,0.000{1}$$
(4)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rodrigues, J.C.L., Rooms, B., Hyde, K. et al. The corrected left ventricular ejection fraction: a potential new measure of ventricular function. Int J Cardiovasc Imaging 37, 1987–1997 (2021). https://doi.org/10.1007/s10554-021-02193-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10554-021-02193-4

Keywords

Navigation