Skip to main content
Log in

Reference values of thoracic aorta and pulmonary artery diameters by age and gender in healthy Chinese adults assessed by cardiac magnetic resonance imaging: data from national center for cardiovascular diseases of China

  • Original Paper
  • Published:
The International Journal of Cardiovascular Imaging Aims and scope Submit manuscript

Abstract

The aim of the study was to define normal ranges for thoracic aorta and pulmonary artery diameters relative to gender, age, body surface area (BSA) and body mass index (BMI) in healthy Chinese adults by cardiac magnetic resonance (CMR). We studied 200 healthy participants (100 men, 100 women; age range from 20–70) by using a 3.0-T CMR system. The diameters of the ascending aorta (AA), main pulmonary artery (PA), proximal descending aorta (DA) and Valsalva sinus (VAS) were measured manually by two experienced doctors on half-Fourier single-shot spin echo (HASTE) and balanced steady-state free precession (bSSFP) cine images. The mean value and age specific and gender adjusted normal limits were calculated. The linear regression analysis were performed between diameters and gender, age, BMI and BSA. The mean and 95% confidence interval(CI) of AA, PA, DA and VAS were 28.95 ± 4.61 mm(95% CI 19.92–37.99 mm), 22.41 ± 2.59 mm(95% CI 17.31–27.47 mm), 20.61 ± 2.96 mm(95% CI 14.81–26.42 mm), 31.15 ± 3.65 mm(95% CI 24.00–38.29 mm), respectively. The gender differences of all the parameters above were statistically significant (all p < 0.01). Both thoracic aorta and pulmonary artery dilates with the increase of age, while AA has the highest dilation rate. The mean PA/AA was 0.79 and showed no gender difference, but there was statistical difference among all age groups (p < 0.01). AA and DA had stronger association with age and BSA than BMI. Age- and gender-specific reference diameters of thoracic aorta and pulmonary artery were provided in healthy Chinese adults. Age and BSA have stronger effects on the ranges of diameters than BMI.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

The datasets are available from the corresponding author on reasonable request.

References

  1. Evangelista A (2010) Diseases of the aorta: aneurysm of the ascending aorta. Heart 96(12):979–985. https://doi.org/10.1136/hrt.2008.152751

    Article  PubMed  Google Scholar 

  2. Leontyev S, Misfeld M, Mohr FW (2014) Aneurysms of the ascending aorta and aortic arch. Chirurg 85(9):760–766. https://doi.org/10.1007/s00104-014-2716-z

    Article  Google Scholar 

  3. Higgins CB, Stark D, McNamara M, Lanzer P, Crooks LE, Kaufman L (1984) Multiplane magnetic resonance imaging of the heart and major vessels: studies in normal volunteers. AJR Am J Roentgenol 142(4):661–667. https://doi.org/10.2214/ajr.142.4.661

    Article  CAS  PubMed  Google Scholar 

  4. Campens L, Demulier L, De Groote K, Vandekerckhove K, De Wolf D, Roman MJ, Devereux RB, De Paepe A, De Backer J (2014) Reference values for echocardiographic assessment of the diameter of the aortic root and ascending aorta spanning all age categories. Am J Cardiol 114(6):914–920. https://doi.org/10.1016/j.amjcard.2014.06.024

    Article  PubMed  Google Scholar 

  5. Guo JP, Jia X, Sai Z, Ge YY, Wang S, Guo W (2016) Thoracic Aorta Dimension Changes During Systole and Diastole: Evaluation with ECG-Gated Computed Tomography. Ann Vasc Surg 35:168–173. https://doi.org/10.1016/j.avsg.2016.01.050

    Article  PubMed  Google Scholar 

  6. Quint LE, Liu PS, Booher AM, Watcharotone K, Myles JD (2013) Proximal thoracic aortic diameter measurements at CT: repeatability and reproducibility according to measurement method. Int J Cardiovasc Imaging 29(2):479–488. https://doi.org/10.1007/s10554-012-0102-9

    Article  PubMed  Google Scholar 

  7. Vasan RS, Larson MG, Levy D (1995) Determinants of echocardiographic aortic root size. The Framingham Heart Study Circulation 91(3):734–740. https://doi.org/10.1161/01.cir.91.3.734

    Article  CAS  PubMed  Google Scholar 

  8. Roman MJ, Devereux RB, Kramer-Fox R, O’Loughlin J (1989) Two-dimensional echocardiographic aortic root dimensions in normal children and adults. Am J Cardiol 64(8):507–512. https://doi.org/10.1016/0002-9149(89)90430-x

    Article  CAS  PubMed  Google Scholar 

  9. Cohen GI, White M, Sochowski RA, Klein AL, Bridge PD, Stewart WJ, Chan KL (1995) Reference values for normal adult transesophageal echocardiographic measurements. J Am Soc Echocardiogr 8(3):221–230. https://doi.org/10.1016/s0894-7317(05)80031-8

    Article  CAS  PubMed  Google Scholar 

  10. Reed CM, Richey PA, Pulliam DA, Somes GW, Alpert BS (1993) Aortic dimensions in tall men and women. Am J Cardiol 71(7):608–610. https://doi.org/10.1016/0002-9149(93)90523-f

    Article  CAS  PubMed  Google Scholar 

  11. Danias PG, Tritos NA, Stuber M, Botnar RM, Kissinger KV, Manning WJ (2003) Comparison of aortic elasticity determined by cardiovascular magnetic resonance imaging in obese versus lean adults. Am J Cardiol 91(2):195–199. https://doi.org/10.1016/s0002-9149(02)03109-0

    Article  PubMed  Google Scholar 

  12. Mohiaddin RH, Schoser K, Amanuma M, Burman ED, Longmore DB (1990) MR imaging of age-related dimensional changes of thoracic aorta. J Comput Assist Tomogr 14(5):748–752. https://doi.org/10.1097/00004728-199009000-00012

    Article  CAS  PubMed  Google Scholar 

  13. Garcier JM, Petitcolin V, Filaire M, Mofid R, Azarnouch K, Ravel A, Vanneuville G, Boyer L (2003) Normal diameter of the thoracic aorta in adults: a magnetic resonance imaging study. Surg Radiol Anat 25(3–4):322–329. https://doi.org/10.1007/s00276-003-0140-z

    Article  PubMed  Google Scholar 

  14. Lange TJ, Dornia C, Stiefel J, Stroszczynski C, Arzt M, Pfeifer M, Hamer OW (2013) Increased pulmonary artery diameter on chest computed tomography can predict borderline pulmonary hypertension. Pulm Circ 3(2):363–368. https://doi.org/10.4103/2045-8932.113175

    Article  PubMed  PubMed Central  Google Scholar 

  15. Lee SH, Kim YJ, Lee HJ, Kim HY, Kang YA, Park MS, Kim YS, Kim SK, Chang J, Jung JY (2015) Comparison of CT-Determined Pulmonary Artery Diameter, Aortic Diameter, and Their Ratio in Healthy and Diverse Clinical Conditions. PLoS ONE 10(5):e0126646. https://doi.org/10.1371/journal.pone.0126646

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Mosteller RD (1987) Simplified calculation of body-surface area. N Engl J Med 317(17):1098. https://doi.org/10.1056/NEJM198710223171717

    Article  CAS  PubMed  Google Scholar 

  17. Davis AE, Lewandowski AJ, Holloway CJ, Ntusi NA, Banerjee R, Nethononda R, Pitcher A, Francis JM, Myerson SG, Leeson P, Donovan T, Neubauer S, Rider OJ (2014) Observational study of regional aortic size referenced to body size: production of a cardiovascular magnetic resonance nomogram. J Cardiovasc Magn Reson 16:9. https://doi.org/10.1186/1532-429X-16-9

    Article  PubMed  PubMed Central  Google Scholar 

  18. Karazincir S, Balci A, Seyfeli E, Akoglu S, Babayigit C, Akgul F, Yalcin F, Egilmez E (2008) CT assessment of main pulmonary artery diameter. Diagn Interv Radiol 14(2):72–74

    PubMed  Google Scholar 

  19. Kawel-Boehm N, Maceira A, Valsangiacomo-Buechel ER, Vogel-Claussen J, Turkbey EB, Williams R, Plein S, Tee M, Eng J, Bluemke DA (2015) Normal values for cardiovascular magnetic resonance in adults and children. J Cardiovasc Magn Reson 17:29. https://doi.org/10.1186/s12968-015-0111-7

    Article  PubMed  PubMed Central  Google Scholar 

  20. Edwards PD, Bull RK, Coulden R (1998) CT measurement of main pulmonary artery diameter. Br J Radiol 71(850):1018–1020. https://doi.org/10.1259/bjr.71.850.10211060

    Article  CAS  PubMed  Google Scholar 

  21. Lin FY, Devereux RB, Roman MJ, Meng J, Jow VM, Jacobs A, Weinsaft JW, Shaw LJ, Berman DS, Gilmore A, Callister TQ, Min JK (2008) Assessment of the thoracic aorta by multidetector computed tomography: age- and sex-specific reference values in adults without evident cardiovascular disease. J Cardiovasc Comput Tomogr 2(5):298–308. https://doi.org/10.1016/j.jcct.2008.08.002

    Article  PubMed  Google Scholar 

  22. Turkbey EB, Jain A, Johnson C, Redheuil A, Arai AE, Gomes AS, Carr J, Hundley WG, Teixido-Tura G, Eng J, Lima JA, Bluemke DA (2014) Determinants and normal values of ascending aortic diameter by age, gender, and race/ethnicity in the Multi-Ethnic Study of Atherosclerosis (MESA). J Magn Reson Imaging 39(2):360–368. https://doi.org/10.1002/jmri.24183

    Article  PubMed  Google Scholar 

  23. Beck L, Mohamed AA, Strugnell WE, Bartlett H, Rodriguez V, Hamilton-Craig C, Slaughter RE (2018) MRI measurements of the thoracic aorta and pulmonary artery. J Med Imaging Radiat Oncol 62(1):64–71. https://doi.org/10.1111/1754-9485.12637

    Article  PubMed  Google Scholar 

  24. Potthast S, Mitsumori L, Stanescu LA, Richardson ML, Branch K, Dubinsky TJ, Maki JH (2010) Measuring aortic diameter with different MR techniques: comparison of three-dimensional (3D) navigated steady-state free-precession (SSFP), 3D contrast-enhanced magnetic resonance angiography (CE-MRA), 2D T2 black blood, and 2D cine SSFP. J Magn Reson Imaging 31(1):177–184. https://doi.org/10.1002/jmri.22016

    Article  PubMed  Google Scholar 

  25. Schlatmann TJ, Becker AE (1977) Histologic changes in the normal aging aorta: implications for dissecting aortic aneurysm. Am J Cardiol 39(1):13–20. https://doi.org/10.1016/s0002-9149(77)80004-0

    Article  CAS  PubMed  Google Scholar 

  26. Boraita A, Heras ME, Morales F, Marina-Breysse M, Canda A, Rabadan M, Barriopedro MI, Varela A, de la Rosa A, Tunon J (2016) Reference Values of Aortic Root in Male and Female White Elite Athletes According to Sport. Circ Cardiovasc Imaging. https://doi.org/10.1161/CIRCIMAGING.116.005292

    Article  PubMed  Google Scholar 

  27. Payo IM, Ongkana N, Tohno S, Azuma C, Minami T, Moriwake Y, Tohno Y (2007) Moderate accumulation of calcium and phosphorus in the splenic artery with aging and low accumulation of those in the pulmonary artery with aging. Biol Trace Elem Res 119(2):103–110. https://doi.org/10.1007/s12011-007-0052-6

    Article  CAS  PubMed  Google Scholar 

  28. Lederle FA, Johnson GR, Wilson SE, Chute EP, Littooy FN, Bandyk D, Krupski WC, Barone GW, Acher CW, Ballard DJ (1997) Prevalence and associations of abdominal aortic aneurysm detected through screening Aneurysm Detection and Management (ADAM) Veterans Affairs Cooperative Study Group. Ann Intern Med 126(6):441–449. https://doi.org/10.7326/0003-4819-126-6-199703150-00004

    Article  CAS  PubMed  Google Scholar 

  29. Redheuil A, Yu WC, Wu CO, Mousseaux E, de Cesare A, Yan R, Kachenoura N, Bluemke D, Lima JA (2010) Reduced ascending aortic strain and distensibility: earliest manifestations of vascular aging in humans. Hypertension 55(2):319–326. https://doi.org/10.1161/HYPERTENSIONAHA.109.141275

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Burman ED, Keegan J, Kilner PJ (2008) Aortic root measurement by cardiovascular magnetic resonance: specification of planes and lines of measurement and corresponding normal values. Circ Cardiovasc Imaging 1(2):104–113. https://doi.org/10.1161/CIRCIMAGING.108.768911

    Article  PubMed  Google Scholar 

Download references

Funding

This study was supported by the Research Grant of Construction Research Project of Key Laboratory (Cultivation) of the Chinese Academy of Medical Sciences (2019PT310025), Capital’s Funds for Health Improvement and Research (CFH 2020-2-4034), Capital Clinically Characteristic Applied Research Fund (Z191100006619021), Clinical and Translational Fund of Chinese Academy of Medical Sciences (2019XK320063), National Natural Science Foundation of China (81771811 and 81971588) and Graduate Innovation Fund of Peking Union Medical College, China (2019-1002-74).

Author information

Authors and Affiliations

Authors

Contributions

Guarantor of integrity of the entire study: ML study design ML literature research: SL and BZ image and data acquisition, collection and analysis GY, XY, SL and BZ statistical analysis: SL and BZ manuscript preparation: SL and BZ manuscript editing ML and SZ.

Corresponding author

Correspondence to Minjie Lu.

Ethics declarations

Conflicts of interest

All authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, S., Zhuang, B., Yin, G. et al. Reference values of thoracic aorta and pulmonary artery diameters by age and gender in healthy Chinese adults assessed by cardiac magnetic resonance imaging: data from national center for cardiovascular diseases of China. Int J Cardiovasc Imaging 37, 1423–1431 (2021). https://doi.org/10.1007/s10554-020-02116-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10554-020-02116-9

Keywords

Navigation