Skip to main content

Advertisement

Log in

Use of spectral tracking technique to evaluate the changes in left ventricular function in patients undergoing chemotherapy for colorectal cancer

  • Original Paper
  • Published:
The International Journal of Cardiovascular Imaging Aims and scope Submit manuscript

Abstract

To evaluate the changes in left ventricular myocardial function in patients with colorectal cancer undergoing chemotherapy with mFOLFOX6 (oxaliplatin + 5-fluorouracil + calcium folinate) using three-dimensional speckle-tracking echocardiography (3D-STE). Data were collected from 30 patients diagnosed with colorectal cancer in our hospital treated with mFOLFOX6. We used 3D-STE to measure the following parameters of left ventricle function: global longitudinal strain (GLS), global area strain (GAS), global circumferential strain (GCS), global radial strain (GRS), and left ventricular twist (LVtw). Myocardial composite index (MCI) was calculated from measured values (MCI = GLS × LVtw). The above listed parameters were compared before and after chemotherapy. Receiver operating curves (ROC) were prepared for each parameter and analyzed to identify correlations among MCI, LVEF, GLS, and cTnT. Compared with the pre-chemotherapy state, the absolute values of MCI, LVtw, GLS, GAS, GCS, and GRS decreased with increasing cumulative doses of chemotherapeutic drugs. The absolute values of GAS, GLS, MCI, and LVtw decreased after the first cycle of chemotherapy (P < 0.05). The areas under the ROC curves for MCI and GLS were 0.903 and 0.838, respectively. The correlation observed between MCI and cTnT (r = − 0.7228) was found to be stronger than that between GLS and cTnT (r = − 0.6008). In conclusion, 3D-STE may help detect early changes in left ventricular myocardial function caused by mFOLFOX6 treatment in patients with colorectal cancer. MCI is a relatively sensitive index among the various measurable parameters.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Dekker E, Tanis PJ, Vleugels JLA, Kasi PM, Wallace MB (2019) Colorectal cancer. Lancet (London, England) 394(10207):1467–1480. https://doi.org/10.1016/s0140-6736(19)32319-0

    Article  Google Scholar 

  2. Wolf AMD, Fontham ETH, Church TR, Flowers CR, Guerra CE, LaMonte SJ, Etzioni R, McKenna MT, Oeffinger KC, Shih YT, Walter LC, Andrews KS, Brawley OW, Brooks D, Fedewa SA, Manassaram-Baptiste D, Siegel RL, Wender RC, Smith RA (2018) Colorectal cancer screening for average-risk adults: 2018 guideline update from the American Cancer Society. CA: Cancer J Clin 68(4):250–281. https://doi.org/10.3322/caac.21457

    Article  Google Scholar 

  3. Kasi PM, Shahjehan F, Cochuyt JJ, Li Z, Colibaseanu DT, Merchea A (2019) Rising proportion of young individuals with rectal and colon cancer. Clin Colorectal Cancer 18(1):e87–e95. https://doi.org/10.1016/j.clcc.2018.10.002

    Article  PubMed  Google Scholar 

  4. André T, Boni C, Navarro M, Tabernero J, Hickish T, Topham C, Bonetti A, Clingan P, Bridgewater J, Rivera F, de Gramont A (2009) Improved overall survival with oxaliplatin, fluorouracil, and leucovorin as adjuvant treatment in stage II or III colon cancer in the MOSAIC trial. J ClinOncol 27(19):3109–3116. https://doi.org/10.1200/jco.2008.20.6771

    Article  Google Scholar 

  5. Joy G, Eissa H, Al Karoudi R, White SK (2019) Fluorouracil-induced Takotsubo cardiomyopathy causing cardiogenic shock: a case report of clinical and acute cardiac magnetic resonance imaging features. Eur Heart J Case Rep 3(4):1–6. https://doi.org/10.1093/ehjcr/ytz146

    Article  PubMed  PubMed Central  Google Scholar 

  6. Redman JM, Rhea LP, Brofferio A, Whelpley M, Gulley JL, Gatti-Mays ME, McMahon S, Cordes LM, Strauss J (2019) Successful 5-fluorouracil (5-FU) infusion re-challenge in a metastatic colorectal cancer patient with coronary artery disease who experienced symptoms consistent with coronary vasospasm during first 5-FU infusion. J GastrointestOncol 10(5):1010–1014. https://doi.org/10.21037/jgo.2019.07.04

    Article  Google Scholar 

  7. Dyhl-Polk A, Vaage-Nilsen M, Schou M, Vistisen KK, Lund CM, Kümler T, Appel JM, Nielsen DL (2020) Incidence and risk markers of 5-fluorouracil and capecitabinecardiotoxicity in patients with colorectal cancer. ActaOncol (Stockholm, Sweden) 59(4):475–483. https://doi.org/10.1080/0284186x.2019.1711164

    Article  CAS  Google Scholar 

  8. Polk A, Shahmarvand N, Vistisen K, Vaage-Nilsen M, Larsen FO, Schou M, Nielsen DL (2016) Incidence and risk factors for capecitabine-induced symptomatic cardiotoxicity: a retrospective study of 452 consecutive patients with metastatic breast cancer. BMJ Open 6(10):e012798. https://doi.org/10.1136/bmjopen-2016-012798

    Article  PubMed  PubMed Central  Google Scholar 

  9. Labianca R, Beretta G, Clerici M, Fraschini P, Luporini G (1982) Cardiac toxicity of 5-fluorouracil: a study on 1083 patients. Tumori 68(6):505–510

    Article  CAS  Google Scholar 

  10. Meyer CC, Calis KA, Burke LB, Walawander CA, Grasela TH (1997) Symptomatic cardiotoxicity associated with 5-fluorouracil. Pharmacotherapy 17(4):729–736

    CAS  PubMed  Google Scholar 

  11. Ray JC, Cho P, Dragon M, Graham CG (2016) A case of 5-fluorouracil-induced cardiac arrest. J Emerg Med 50(1):e1-6. https://doi.org/10.1016/j.jemermed.2015.09.001

    Article  PubMed  Google Scholar 

  12. McDonald JP, MacNamara JP, Zaha VG (2019) Challenges in implementing optimal echocardiographic screening in cardio-oncology. Curr Treat Options Cardiovasc Med 21(8):39. https://doi.org/10.1007/s11936-019-0740-5

    Article  PubMed  Google Scholar 

  13. He J, Yang L (2019) Value of three-dimensional speckle-tracking imaging in detecting left ventricular systolic function in patients with dilated cardiomyopathy. Echocardiography (Mount Kisco, NY) 36(8):1492–1495. https://doi.org/10.1111/echo.14427

    Article  Google Scholar 

  14. Reant P, Barbot L, Touche C, Dijos M, Arsac F, Pillois X, Landelle M, Roudaut R, Lafitte S (2012) Evaluation of global left ventricular systolic function using three-dimensional echocardiography speckle-tracking strain parameters. J Am SocEchocardiogr 25(1):68–79. https://doi.org/10.1016/j.echo.2011.10.009

    Article  Google Scholar 

  15. Mornoş C, Petrescu L (2013) Early detection of anthracycline-mediated cardiotoxicity: the value of considering both global longitudinal left ventricular strain and twist. Can J PhysiolPharmacol 91(8):601–607. https://doi.org/10.1139/cjpp-2012-0398

    Article  CAS  Google Scholar 

  16. Shiga T, Hiraide M (2020) Cardiotoxicities of 5-fluorouracil and other fluoropyrimidines. Curr Treat Options Oncol 21(4):27. https://doi.org/10.1007/s11864-020-0719-1

    Article  PubMed  PubMed Central  Google Scholar 

  17. Südhoff T, Enderle MD, Pahlke M, Petz C, Teschendorf C, Graeven U, Schmiegel W (2004) 5-Fluorouracil induces arterial vasocontractions. Ann Oncol 15(4):661–664. https://doi.org/10.1093/annonc/mdh150

    Article  PubMed  Google Scholar 

  18. Jensen SA, Sørensen JB (2012) 5-Fluorouracil-based therapy induces endovascular injury having potential significance to development of clinically overt cardiotoxicity. Cancer ChemotherPharmacol 69(1):57–64. https://doi.org/10.1007/s00280-011-1669-x

    Article  CAS  Google Scholar 

  19. Polk A, Vaage-Nilsen M, Vistisen K, Nielsen DL (2013) Cardiotoxicity in cancer patients treated with 5-fluorouracil or capecitabine: a systematic review of incidence, manifestations and predisposing factors. Cancer Treat Rev 39(8):974–984. https://doi.org/10.1016/j.ctrv.2013.03.005

    Article  CAS  PubMed  Google Scholar 

  20. Jin X, Bai Y, Gao L, Wu S (2019) Incidence of and risk factors for cardiotoxicity after fluorouracil-based chemotherapy in locally advanced or metastatic gastric cancer patients. Cancer ChemotherPharmacol 84(3):599–607. https://doi.org/10.1007/s00280-019-03888-1

    Article  CAS  Google Scholar 

  21. Lestuzzi C, Vaccher E, Talamini R, Lleshi A, Meneguzzo N, Viel E, Scalone S, Tartuferi L, Buonadonna A, Ejiofor L, Schmoll HJ (2014) Effort myocardial ischemia during chemotherapy with 5-fluorouracil: an underestimated risk. Ann Oncol 25(5):1059–1064. https://doi.org/10.1093/annonc/mdu055

    Article  CAS  PubMed  Google Scholar 

  22. Bergamini C, Dolci G, Truong S, Zanolla L, Benfari G, Fiorio E, Rossi A, Ribichini FL (2019) Role of speckle tracking echocardiography in the evaluation of breast cancer patients undergoing chemotherapy: review and meta-analysis of the literature. CardiovascToxicol 19(6):485–492. https://doi.org/10.1007/s12012-019-09523-y

    Article  Google Scholar 

  23. Yanagimoto K, Okamoto Y, Kodama Y, Nishikawa T, Tanabe T, Kawano Y (2017) Decrease of cardiac base rotation in 2D speckle tracking indicates drug-induced cardiomyopathy after chemotherapy in children with cancer. J PediatrHematolOncol 39(1):10–14. https://doi.org/10.1097/mph.0000000000000683

    Article  CAS  Google Scholar 

  24. Muraru D, Niero A, Rodriguez-Zanella H, Cherata D, Badano L (2018) Three-dimensional speckle-tracking echocardiography: benefits and limitations of integrating myocardial mechanics with three-dimensional imaging. CardiovascDiagnTher 8(1):101–117. https://doi.org/10.21037/cdt.2017.06.01

    Article  Google Scholar 

  25. Coutinho Cruz M, MouraBranco L, Portugal G, Galrinho A, Timóteo AT, Rio P, Ilhão Moreira R, Mendonça T, Leal A, Gameiro F, Duarte Oliveira S, Luz R, Cruz Ferreira R (2020) Three-dimensional speckle-tracking echocardiography for the global and regional assessments of left ventricle myocardial deformation in breast cancer patients treated with anthracyclines. Clin Res Cardiol 109(6):673–684. https://doi.org/10.1007/s00392-019-01556-1

    Article  CAS  PubMed  Google Scholar 

  26. Chen J, Wang L, Wu FF, Sun G (2019) Early detection of cardiotoxicity by 3D speckle tracking imaging of area strain in breast cancer patients receiving chemotherapy. Echocardiography (Mount Kisco, NY) 36(9):1682–1688. https://doi.org/10.1111/echo.14467

    Article  Google Scholar 

  27. Potter E, Marwick TH (2018) Assessment of left ventricular function by echocardiography: the case for routinely adding global longitudinal strain to ejection fraction. JACC Cardiovasc Imaging 11(2 Pt 1):260–274. https://doi.org/10.1016/j.jcmg.2017.11.017

    Article  PubMed  Google Scholar 

  28. Ong G, Yan AT, Connelly KA (2019) Clinical application of echocardiographic-derived myocardial strain imaging in subclinical disease: a primer for cardiologists. CurrOpinCardiol 34(2):147–155. https://doi.org/10.1097/hco.0000000000000592

    Article  Google Scholar 

  29. Neilan TG, Jassal DS, Perez-Sanz TM, Raher MJ, Pradhan AD, Buys ES, Ichinose F, Bayne DB, Halpern EF, Weyman AE, Derumeaux G, Bloch KD, Picard MH, Scherrer-Crosbie M (2006) Tissue Doppler imaging predicts left ventricular dysfunction and mortality in a murine model of cardiac injury. Eur Heart J 27(15):1868–1875. https://doi.org/10.1093/eurheartj/ehl013

    Article  PubMed  Google Scholar 

  30. Kosmas C, Kallistratos MS, Kopterides P, Syrios J, Skopelitis H, Mylonakis N, Karabelis A, Tsavaris N (2008) Cardiotoxicity of fluoropyrimidines in different schedules of administration: a prospective study. J Cancer Res ClinOncol 134(1):75–82. https://doi.org/10.1007/s00432-007-0250-9

    Article  CAS  Google Scholar 

  31. Chong JH, Ghosh AK (2019) Coronary artery vasospasm induced by 5-fluorouracil: proposed mechanisms, existing management options and future directions. IntervCardiol (London, England) 14(2):89–94. https://doi.org/10.15420/icr.2019.12

    Article  Google Scholar 

  32. Kim SM, Kwak CH, Lee B, Kim SB, Sir JJ, Cho WH, Choi SK (2012) A case of severe coronary spasm associated with 5-fluorouracil chemotherapy. Korean J Intern Med 27(3):342–345. https://doi.org/10.3904/kjim.2012.27.3.342

    Article  PubMed  PubMed Central  Google Scholar 

  33. Buckberg G, Hoffman JI, Mahajan A, Saleh S, Coghlan C (2008) Cardiac mechanics revisited: the relationship of cardiac architecture to ventricular function. Circulation 118(24):2571–2587. https://doi.org/10.1161/circulationaha.107.754424

    Article  PubMed  Google Scholar 

  34. Seo Y, Ishizu T, Enomoto Y, Sugimori H, Aonuma K (2011) Endocardial surface area tracking for assessment of regional LV wall deformation with 3D speckle tracking imaging. JACC Cardiovasc Imaging 4(4):358–365. https://doi.org/10.1016/j.jcmg.2010.12.007

    Article  PubMed  Google Scholar 

  35. Li SN, Wong SJ, Cheung YF (2011) Novel area strain based on three-dimensional wall motion analysis for assessment of global left ventricular performance after repair of tetralogy of Fallot. J Am SocEchocardiogr 24(8):819–825. https://doi.org/10.1016/j.echo.2011.03.020

    Article  Google Scholar 

  36. Sengupta PP, Krishnamoorthy VK, Korinek J, Narula J, Vannan MA, Lester SJ, Tajik JA, Seward JB, Khandheria BK, Belohlavek M (2007) Left ventricular form and function revisited: applied translational science to cardiovascular ultrasound imaging. J Am SocEchocardiogr 20(5):539–551. https://doi.org/10.1016/j.echo.2006.10.013

    Article  Google Scholar 

  37. Pokharel P, Yoon AJ, Bella JN (2014) Noninvasive measurement and clinical relevance of myocardial twist and torsion. Expert Rev CardiovascTher 12(11):1305–1315. https://doi.org/10.1586/14779072.2014.970179

    Article  CAS  Google Scholar 

  38. Mehta L, Watson K, Barac A, Beckie T, Bittner V, Cruz-Flores S, Dent S, Kondapalli L, Ky B, Okwuosa T, Piña I, Volgman A (2018) Cardiovascular disease and breast cancer: where these entities intersect: a scientific statement from the American Heart Association. Circulation 137(8):e30–e66

    Article  Google Scholar 

  39. Leitman M, Lysyansky P, Sidenko S, Shir V, Peleg E, Binenbaum M, Kaluski E, Krakover R, Vered Z (2004) Two-dimensional strain—a novel software for real-time quantitative echocardiographic assessment of myocardial function. J Am Soc Echocardiogr 17(10):1021–1029. https://doi.org/10.1016/j.echo.2004.06.019

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the National Natural Science Foundation of China (81460075) for their support in this research. The authors would like to thank the Hospital-level project of First Affiliated Hospital of Medical College, Shihezi University (QN201901; QN201919; QN202019).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Guilin Lu or Shanshan Dong.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

The study has passed an ethical review and the aapproval number is 2019-124-01. The study has been approved for clinical trial registration with the registration number chiCTR2000035226, and the registration date of 2020.08.04.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Electronic supplementary material 1 (PDF 118 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Z., Qin, W., Zhai, Z. et al. Use of spectral tracking technique to evaluate the changes in left ventricular function in patients undergoing chemotherapy for colorectal cancer. Int J Cardiovasc Imaging 37, 1203–1213 (2021). https://doi.org/10.1007/s10554-020-02103-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10554-020-02103-0

Keywords

Navigation