Skip to main content

Advertisement

Log in

5-Fluorouracil-based therapy induces endovascular injury having potential significance to development of clinically overt cardiotoxicity

  • Original Article
  • Published:
Cancer Chemotherapy and Pharmacology Aims and scope Submit manuscript

Abstract

Aim

This study aimed to elucidate the influence of 5-fluorouracil (5-FU)-based therapy on the vascular endothelium and its association with 5-FU-induced heart ischemia.

Methods

The study prospectively accrued patients (n = 106) having completely resected colorectal cancer and receiving adjuvant treatment with 5-FU, folinic acid, and oxaliplatin. The levels of plasma von Willebrand factor (vWf), urine albumin-to-creatinine ratio (UACR), coagulation factor II + VII + X, and fibrin D-dimer were serially assessed before, during, and after chemotherapy.

Results

The vWf level increased from median (range) 1.43 kU/l (0.48 to >3) to 2.64 kU/l (0.23 to >3) (P = 0.001), the UACR increased from 1.1 ± 0.2 mg/mmol (mean ± SE) to 2.1 ± 0.3 mg/mmol (P = 0.001), the coagulation factor II + VII + X activity decreased from 1.00 ± 0.02 to 0.94 ± 0.02 U/l (P = 0.001), and the fibrin D-dimer level increased from 1.1 ± 0.2 to 2.1 ± 0.3 kU/l (P = 0.001) at baseline and during chemotherapy, respectively. The changes in the levels of vWf (P = 0.3), UACR (P = 0.8), coagulation factor II + VII + X (P = 0.8), and fibrin D-dimer (P = 0.6) in nine (8.5%) patients having clinical signs of cardiotoxicity were not significantly different from that of the patients not having cardiotoxicity. The 5-FU-induced rise in plasma biomarkers was not significantly related to the cardiovascular morbidity or its risk factors (P = 0.9).

Conclusions

5-FU therapy induces global reversible endothelial injury leading to a procoagulant state. The ensuing endothelial dysfunction may be of significance to the pathogenesis of 5-FU-induced clinically overt cardiotoxicity. Cardiovascular disease is not significant for the vulnerability of the endothelium to 5-FU-based chemotherapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Jensen SA, Sorensen JB (2006) Risk factors and prevention of cardiotoxicity induced by 5-fluorouracil or capecitabine. Cancer Chemother Pharmacol 58:487–493

    Article  PubMed  CAS  Google Scholar 

  2. Wacker A, Lersch C, Scherpinski U, Reindl L, Seyfarth M (2003) High incidence of angina pectoris in patients treated with 5-fluorouracil. A planned surveillance study with 102 patients. Oncology 65:108–112

    Article  PubMed  CAS  Google Scholar 

  3. Tsavaris N, Kosmas C, Vadiaka M, Efremidis M, Zinelis A, Beldecos D, Sakelariou D, Koufos C, Stamatelos G (2002) Cardiotoxicity following different doses and schedules of 5-fluorouracil administration for malignancy–a survey of 427 patients. Med Sci Monit 8:I51–I57

    Google Scholar 

  4. Schober C, Papageorgiou E, Harstrick A, Bokemeyer C, Mugge A, Stahl M, Wilke H, Poliwoda H, Hiddemann W, Kohne-Wompner CH (1993) Cardiotoxicity of 5-fluorouracil in combination with folinic acid in patients with gastrointestinal cancer. Cancer 72:2242–2247

    Article  PubMed  CAS  Google Scholar 

  5. Robben NC, Pippas AW, Moore JO (1993) The syndrome of 5-fluorouracil cardiotoxicity. An elusive cardiopathy. Cancer 71:493–509

    Article  PubMed  CAS  Google Scholar 

  6. De Forni M, Malet-Martino MC, Jaillais P, Shubinski RE, Bachaud JM, Lemaire L, Canal P, Chevreau C, Carrie D, Soulie P (1992) Cardiotoxicity of high-dose continuous infusion fluorouracil: a prospective clinical study. J Clin Oncol 10:1795–1801

    PubMed  Google Scholar 

  7. Mosseri M, Fingert HJ, Varticovski L, Chokshi S, Isner JM (1993) In vitro evidence that myocardial ischemia resulting from 5-fluorouracil chemotherapy is due to protein kinase C-mediated vasoconstriction of vascular smooth muscle. Cancer Res 53:3028–3033

    PubMed  CAS  Google Scholar 

  8. Porta C, Moroni M, Ferrari S, Nastasi G (1998) Endothelin-1 and 5-fluorouracil-induced cardiotoxicity. Neoplasma 45:81–82

    PubMed  CAS  Google Scholar 

  9. Kohne CH, Thuss-Patience P, Friedrich M, Daniel PT, Kretzschmar A, Benter T, Bauer B, Dietz R, Dorken B (1998) Raltitrexed (Tomudex): an alternative drug for patients with colorectal cancer and 5-fluorouracil associated cardiotoxicity. Br J Cancer 77:973–977

    Article  PubMed  CAS  Google Scholar 

  10. Kuzel T, Esparaz B, Green D, Kies M (1990) Thrombogenicity of intravenous 5-fluorouracil alone or in combination with cisplatin. Cancer 65:885–889

    Article  PubMed  CAS  Google Scholar 

  11. Matsubara I, Kamiya J, Imai S (1980) Cardiotoxic effects of 5-fluorouracil in the guinea pig. Jpn J Pharmacol 30:871–879

    Article  PubMed  CAS  Google Scholar 

  12. Lemaire L, Malet-Martino MC, Longo S, Martino R, De Forni M, Carton M (1991) Fluoroacetaldehyde as cardiotoxic impurity in fluorouracil (Roche). Lancet 337:560

    Article  PubMed  CAS  Google Scholar 

  13. Kinhult S, Albertsson M, Eskilsson J, Cwikiel M (2001) Antithrombotic treatment in protection against thrombogenic effects of 5-fluorouracil on vascular endothelium: a scanning microscopy evaluation. Scanning 23:1–8

    Article  PubMed  CAS  Google Scholar 

  14. Cwikiel M, Eskilsson J, Wieslander JB, Stjernquist U, Albertsson M (1996) The appearance of endothelium in small arteries after treatment with 5-fluorouracil. An electron microscopic study of late effects in rabbits. Scanning Microsc 10:805–818

    PubMed  CAS  Google Scholar 

  15. Cwikiel M, Zhang B, Eskilsson J, Wieslander JB, Albertsson M (1995) The influence of 5-fluorouracil on the endothelium in small arteries. An electron microscopic study in rabbits. Scanning Microsc 9:561–576

    PubMed  CAS  Google Scholar 

  16. Chow AY, Chin C, Dahl G, Rosenthal DN (2006) Anthracyclines cause endothelial injury in pediatric cancer patients: a pilot study. J Clin Oncol 24:925–928

    Article  PubMed  CAS  Google Scholar 

  17. Hayward R, Ruangthai R, Schneider CM, Hyslop RM, Strange R, Westerlind KC (2004) Training enhances vascular relaxation after chemotherapy-induced vasoconstriction. Med Sci Sports Exerc 36:428–434

    Article  PubMed  CAS  Google Scholar 

  18. Sudoh M, Kishimoto Y, Marumoto A, Inoue M, Sano A, Miura N, Horie Y, Hasegawa J, Ryoke K (2004) A new animal model of continuous catheterization for investigating mechanisms of arteritis associated with chemotherapy. Life Sci 74:3025–3032

    Article  PubMed  CAS  Google Scholar 

  19. Allegra CJ, Yothers G, O’Connell MJ, Sharif S, Colangelo LH, Lopa SH, Petrelli NJ, Goldberg RM, Atkins JN, Seay TE, Fehrenbacher L, O’Reilly S, Chu L, Azar CA, Wolmark N (2009) Initial safety report of NSABP C-08: a randomized phase III study of modified FOLFOX6 with or without bevacizumab for the adjuvant treatment of patients with stage II or III colon cancer. J Clin Oncol 27:3385–3390

    Article  PubMed  CAS  Google Scholar 

  20. Van Cutsem E, Rivera F, Berry S, Kretzschmar A, Michael M, DiBartolomeo M, Mazier MA, Canon JL, Georgoulias V, Peeters M, Bridgewater J, Cunningham D (2009) Safety and efficacy of first-line bevacizumab with FOLFOX, XELOX, FOLFIRI and fluoropyrimidines in metastatic colorectal cancer: the BEAT study. Ann Oncol 20:1842–1847

    Article  PubMed  Google Scholar 

  21. Kabbinavar F, Hurwitz HI, Fehrenbacher L, Meropol NJ, Novotny WF, Lieberman G, Griffing S, Bergsland E (2003) Phase II, randomized trial comparing bevacizumab plus fluorouracil (FU)/leucovorin (LV) with FU/LV alone in patients with metastatic colorectal cancer. J Clin Oncol 21:60–65

    Article  PubMed  CAS  Google Scholar 

  22. Zwicker JI, Liebman HA, Neuberg D, Lacroix R, Bauer KA, Furie BC, Furie B (2009) Tumor-derived tissue factor-bearing microparticles are associated with venous thromboembolic events in malignancy. Clin Cancer Res 15:6830–6840

    Article  PubMed  CAS  Google Scholar 

  23. Bazo IG, Gonzales VC, Gutierrez AA, Rodriguez JR, Fernandez JAP, Gomez JC, Lizoain JLH, Lopez JG (2005) Impact of surgery and chemotherapy on von Willebrand factor and vascular endothelial growth factor levels in colorectal cancer. Clin Transl Oncol 7:150–155

    Google Scholar 

  24. van Duijnhoven EM, Lustermans FA, van Wersch JW (1993) Evaluation of the coagulation/fibrinolysis balance in patients with colorectal cancer. Haemostasis 23:168–172

    PubMed  Google Scholar 

  25. Mochizuki S, Yoshino T, Kojima T, Fuse N, Ikematsu H, Minashi K, Yano T, Tahara M, Kaneko K, Doi T, Koike K, Ohtsu A (2010) Therapeutic significance of a D-dimer cut-off level of >3 {micro}g/ml in colorectal cancer patients treated with standard chemotherapy plus bevacizumab. Jpn J Clin Oncol 40:933–937

    Google Scholar 

  26. Xu G, Zhang YL, Huang W (2004) Relationship between plasma D-dimer levels and clinicopathologic parameters in resectable colorectal cancer patients. World J Gastroenterol 10:922–923

    PubMed  CAS  Google Scholar 

  27. Oya M, Akiyama Y, Okuyama T, Ishikawa H (2001) High preoperative plasma D-dimer level is associated with advanced tumor stage and short survival after curative resection in patients with colorectal cancer. Jpn J Clin Oncol 31:388–394

    Article  PubMed  CAS  Google Scholar 

  28. Blackwell K, Hurwitz H, Lieberman G, Novotny W, Snyder S, Dewhirst M, Greenberg C (2004) Circulating D-dimer levels are better predictors of overall survival and disease progression than carcinoembryonic antigen levels in patients with metastatic colorectal carcinoma. Cancer 101:77–82

    Article  PubMed  CAS  Google Scholar 

  29. Damin DC, Rosito MA, Gus P, Roisemberg I, Bandinelli E, Schwartsmann G (2002) Von Willebrand factor in colorectal cancer. Int J Colorectal Dis 17:42–45

    Article  PubMed  Google Scholar 

  30. Wang WS, Lin JK, Lin TC, Chiou TJ, Liu JH, Yen CC, Chen PM (2005) Plasma von Willebrand factor level as a prognostic indicator of patients with metastatic colorectal carcinoma. World J Gastroenterol 11:2166–2170

    PubMed  CAS  Google Scholar 

  31. Jensen SA, Hasbak P, Mortensen J, Sorensen JB (2010) Fluorouracil induces myocardial ischemia with increases of plasma brain natriuretic peptide and lactic acid but without dysfunction of left ventricle. J Clin Oncol 28:5280–5286. doi:10.1200/JCO.2009.27.3953

    Article  PubMed  CAS  Google Scholar 

  32. Guidelines Subcommittee (1999) 1999 World Health Organization-international society of hypertension guidelines for the management of hypertension. J Hypertens 17:151–183

    Google Scholar 

  33. American Diabetes Association (2007) Diagnosis and classification of diabetes mellitus Diabetes Care 30(Suppl 1):S42–S47

  34. Expert Panel on Detection, Evaluation, and Treatment of High Blood Cholesterol (2001) Executive summary of the third report of the National Cholesterol Education Program (NCEP) expert panel on detection, evaluation, and treatment of high blood cholesterol in adults (adult treatment panel III) JAMA 285:2486–2497

    Google Scholar 

  35. Dignam JJ, Polite BN, Yothers G, Raich P, Colangelo L, O’Connell MJ, Wolmark N (2006) Body mass index and outcomes in patients who receive adjuvant chemotherapy for colon cancer. J Natl Cancer Inst 98:1647–1654

    Article  PubMed  Google Scholar 

  36. Jensen JS, Clausen P, Borch-Johnsen K, Jensen G, Feldt-Rasmussen B (1997) Detecting microalbuminuria by urinary albumin/creatinine concentration ratio. Nephrol Dial Transplant 12(Suppl 2):6–9

    PubMed  Google Scholar 

  37. Millart H, Brabant L, Lorenzato M, Lamiable D, Albert O, Choisy H (1992) The effects of 5-fluorouracil on contractility and oxygen uptake of the isolated perfused rat heart. Anticancer Res 12:571–576

    PubMed  CAS  Google Scholar 

  38. Feliu J, Safont MJ, Salud A, Losa F, Garcia-Giron C, Bosch C, Escudero P, Lopez R, Madronal C, Bolanos M, Gil M, Llombart A, Castro-Carpeno J, Gonzalez-Baron M (2010) Capecitabine and bevacizumab as first-line treatment in elderly patients with metastatic colorectal cancer. Br J Cancer 102:1468–1473

    Article  PubMed  CAS  Google Scholar 

  39. Stender MT, Frokjaer JB, Larsen TB, Lundbye-Christensen S, Thorlacius-Ussing O (2009) Preoperative plasma D-dimer is a predictor of postoperative deep venous thrombosis in colorectal cancer patients: a clinical, prospective cohort study with one-year follow-up. Dis Colon Rectum 52:446–451

    Article  PubMed  Google Scholar 

  40. Heit JA, Silverstein MD, Mohr DN, Petterson TM, O’Fallon WM, Melton LJ III (2000) Risk factors for deep vein thrombosis and pulmonary embolism: a population-based case-control study. Arch Intern Med 160:809–815

    Article  PubMed  CAS  Google Scholar 

  41. Swystun LL, Shin LY, Beaudin S, Liaw PC (2009) Chemotherapeutic agents doxorubicin and epirubicin induce a procoagulant phenotype on endothelial cells and blood monocytes. J Thromb Haemost 7:619–626

    Article  PubMed  CAS  Google Scholar 

  42. Gordon SG, Cross BA (1981) A factor X-activating cysteine protease from malignant tissue. J Clin Invest 67:1665–1671

    Article  PubMed  CAS  Google Scholar 

  43. Varki A (2007) Trousseau’s syndrome: multiple definitions and multiple mechanisms. Blood 110:1723–1729

    Article  PubMed  CAS  Google Scholar 

  44. Hron G, Kollars M, Weber H, Sagaster V, Quehenberger P, Eichinger S, Kyrle PA, Weltermann A (2007) Tissue factor-positive microparticles: cellular origin and association with coagulation activation in patients with colorectal cancer. Thromb Haemost 97:119–123

    PubMed  CAS  Google Scholar 

  45. Ozturk M, Sengul N, Dagli M, Kosar A, Bavbek N (2003) Global fibrinolytic capacity in colorectal cancer: a new clue to occult fibrinolysis. Clin Appl Thromb Hemost 9:151–154

    Article  PubMed  Google Scholar 

  46. Kockar C, Kockar O, Ozturk M, Dagli M, Bavbek N, Kosar A (2005) Global fibrinolytic capacity increased exponentially in metastatic colorectal cancer. Clin Appl Thromb Hemost 11:227–230

    Article  PubMed  CAS  Google Scholar 

  47. Frielingsdorf J, Kaufmann P, Suter T, Hug R, Hess OM (1998) Percutaneous transluminal coronary angioplasty reverses vasoconstriction of stenotic coronary arteries in hypertensive patients. Circulation 98:1192–1197

    PubMed  CAS  Google Scholar 

  48. Lechner D, Kollars M, Gleiss A, Kyrle PA, Weltermann A (2007) Chemotherapy-induced thrombin generation via procoagulant endothelial microparticles is independent of tissue factor activity. J Thromb Haemost 5:2445–2452

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Desiree and Niels Yde Foundation, Manufacturer Einar Willumsen Foundation, Dagmar Marshall Foundation, Aase and Ejnar Danielsen Foundation, A. P. Møller Foundation for the Advancement of Medical Science, Merchant M. Brogaard and Wife’s Foundation, Director Jacob Madsen and wife Olga Madsen Foundation, Director Ib Henriksen Foundation, Merchant M. Kristian Kjaer and wife Foundation, the Foundation of 1870, Merchant Svend Hansen and wife Ina Hansen Foundation and Max, Anna Friedmann Foundation and Lykfeldt Foundation supported this study.

Conflicts of interest

The authors claim no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Søren Astrup Jensen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jensen, S.A., Sørensen, J.B. 5-Fluorouracil-based therapy induces endovascular injury having potential significance to development of clinically overt cardiotoxicity. Cancer Chemother Pharmacol 69, 57–64 (2012). https://doi.org/10.1007/s00280-011-1669-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00280-011-1669-x

Keywords

Navigation