Skip to main content

Advertisement

Log in

Establishing normal reference value of carotid ultrafast pulse wave velocity and evaluating changes on coronary slow flow

  • Original Paper
  • Published:
The International Journal of Cardiovascular Imaging Aims and scope Submit manuscript

Abstract

Pulse wave velocity (PWV) measured by ultrafast ultrasound imaging can early evaluate arteriosclerosis. The study aimed to establish normal reference range for ufPWV in healthy adults and explore its influencing factors, and evaluate the ufPWV changes on coronary slow flow (CSF). ufPWV at the beginning and end of systole (ufPWV-BS and ufPWV-ES, respectively) was measured in healthy adults (201 cases). CSF was diagnosed based on thrombolysis in myocardial infarction (TIMI) frame count during coronary angiography. ufPWV-BS and ufPWV-ES were compared between CSF (50 cases) and control groups (50 healthy age-, body mass index-, and blood pressure-matched adults). In healthy adults, average ufPWV-BS and ufPWV-ES was 5.36 ± 1.27 m/s and 6.99 ± 1.93 m/s, respectively. ufPWV-BS and ufPWV-ES positively correlated with age, body mass index, and blood pressure. ufPWV-BS and ufPWV-ES in the CSF group were higher than in the control group (ufPWV-BS, 6.05 ± 1.07 vs. 5.26 ± 0.89 m/s, P < 0.001; ufPWV-ES, 9.07 ± 1.84 vs. 6.84 ± 1.08 m/s, P < 0.001). Receiver operating characteristic curves showed that ufPWV-ES was more sensitive than ufPWV-BS. The normal reference range of ufPWV for healthy adults was established. Age, body mass index, and blood pressure were the main influencing factors. ufPWV was increased in the patients with CSF. The findings indicated that, in addition to reflecting atherosclerosis, ufPWV might also provide a basis for the noninvasive evaluation of microvascular impairment in the patients with CSF.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

The datasets during and/or analyzed during the current study is available from the corresponding author on reasonable request.

Abbreviations

CSF:

Coronary slow flow

PWV:

Pulse wave velocity

ufPWV:

Ultrafast pulse wave velocity

ufPWV-BS:

Ultrafast pulse wave velocity-beginning of systole

ufPWV-ES:

Ultrafast pulse wave velocity-end of systole

cfPWV:

Carotid-femoral pulse wave velocity

aPWV:

Brachial-ankle pulse wave velocity

IMT:

Intima-media thickness

TIMI:

Thrombolysis in myocardial infarction

TFC:

TIMI frame count

cLAD:

Corrected left anterior descending coronary artery

LCx:

Left circumflex coronary artery

RCA:

Right coronary artery

BMI:

Body mass index

HR:

Heart rate

SBP:

Systolic blood pressure

DBP:

Diastolic blood pressure

FBG:

Fasting blood glucose

TG:

Triglyceride

TC:

Total cholesterol

HDL:

High-density lipoprotein

LDL:

Low-density lipoprotein

References

  1. Hawkins BM, Stavrakis S, Rousan TA, Abu-Fadel M, Schechter E (2012) Coronary slow flow–prevalence and clinical correlations. Circ J 76:936–942

    Article  Google Scholar 

  2. Cin VG, Pekdemir H, Camsar A, Cicek D, Akkus MN, Parmaksyz T, Katyrcybay T, Doven O (2003) Diffuse intimal thickening of coronary arteries in slow coronary flow. Jpn Heart J 44:907–919

    Article  Google Scholar 

  3. Beltrame JF, Limaye SB, Wuttke RD, Horowitz JD (2003) Coronary hemodynamic and metabolic studies of the coronary slow flow phenomenon. Am Heart J 146:84–90

    Article  Google Scholar 

  4. Guray U, Guray Y, Yilmaz MB, Caldir V, Cay S, Sasmaz H, Kormaz S (2007) Aortic pulse pressure and aortic pulsatility in patients with coronary slow flow. Cardiology 107:233–238

    Article  CAS  Google Scholar 

  5. Mosseri M, Yarom R, Gotsman MS, Hasin Y (1986) Histologic evidence for small-vessel coronary artery disease in patients with angina pectoris and patent large coronary arteries. Circulation 74:964–972

    Article  CAS  Google Scholar 

  6. Mangieri E, Macchiarelli G, Ciavolella M, Barillà F, Avella A, Martinotti A, Dell'Italia LJ, Scibilia G, Motta P, Campa PP (1996) Slow coronary flow: clinical and histopathological features in patients with otherwise normal epicardial coronary arteries. Cathet Cardiovasc Diagn 37:375–381

    Article  CAS  Google Scholar 

  7. Couade M, Pernot M, Tanter M, Prada C, Messas E, Fink M (2008) Non-invasive quantitative imaging of arterial wall elasticity using supersonic shear imaging. IEEE Ultrason Symp 2008:946–949

    Google Scholar 

  8. Tanter M, Fink M (2014) Ultrafast imaging in biomedical ultrasound. IEEE Trans Ultrason Ferroelectr Freq Control 61:102–119

    Article  Google Scholar 

  9. Montaldo G, Tanter M, Bercoff J, Benech N, Fink M (2009) Coherent plane-wave compounding for very high frame rate ultrasonography and transient elastography. IEEE Trans Ultrason Ferroelectr Freq Control 56:489–506

    Article  Google Scholar 

  10. Goudot G, Mirault T, Khider L, Pedreira O, Cheng C, Poree J, Gruest M, Jeunemaitre X, Pernot M, Messas E (2019) Carotid stiffness assessment with ultrafast ultrasound imaging in case of bicuspid aortic valve. Front Physiol 10:1330

    Article  Google Scholar 

  11. Reference values for Arterial Stiffness' Collaboration (2010) Determinants of pulse wave velocity in healthy people and in the presence of cardiovascular risk factors: 'establishing normal and reference values'. Eur Heart J 31:2338–2350

    Article  Google Scholar 

  12. Ben-Shlomo Y, Spears M, Boustred C, May M, Anderson SG, Benjamin EJ, Boutouyrie P, Cameron J, Chen CH, Cruickshank JK, Hwang SJ, Lakatta EG, Laurent S, Maldonado J, Mitchell GF, Najjar SS, Newman AB, Ohishi M, Pannier B, Pereira T, Vasan RS, Shokawa T, Sutton-Tyrell K, Verbeke F, Wang KL, Webb DJ, Willum Hansen T, Zoungas S, McEniery CM, Cockcroft JR, Wilkinson IB (2014) Aortic pulse wave velocity improves cardiovascular event prediction: an individual participant meta-analysis of prospective observational data from 17,635 subjects. J Am Coll Cardiol 63:636–646

    Article  Google Scholar 

  13. Cavalcante JL, Lima JA, Redheuil A, Al-Mallah MH (2011) Aortic stiffness: current understanding and future directions. J Am Coll Cardiol 57:1511–1522

    Article  Google Scholar 

  14. Messas E, Pernot M, Couade M (2013) Arterial wall elasticity: state of the art and future prospects. Diagn Interv Imaging 94:561–569

    Article  CAS  Google Scholar 

  15. van Sloten TT, Protogerou AD, Henry RM, Schram MT, Launer LJ, Stehouwer CD (2015) Association between arterial stiffness, cerebral small vessel disease and cognitive impairment: a systematic review and meta-analysis. Neurosci Biobehav Rev 53:121–130

    Article  Google Scholar 

  16. Ikonomidis I, Makavos G, Lekakis J (2015) Arterial stiffness and coronary artery disease. Curr Opin Cardiol 30:422–431

    PubMed  Google Scholar 

  17. Peralta CA, Adeney KL, Shlipak MG, Jacobs D Jr, Duprez D, Bluemke D, Polak J, Psaty B, Kestenbaum BR (2010) Structural and functional vascular alterations and incident hypertension in normotensive adults: the Multi-Ethnic Study of Atherosclerosis. Am J Epidemiol 171:63–71

    Article  Google Scholar 

  18. Van Bortel LM, Laurent S, Boutouyrie P, Chowienczyk P, Cruickshank JK, De Backer T, Filipovsky J, Huybrechts S, Mattace-Raso FU, Protogerou AD, Schillaci G, Segers P, Vermeersch S, Weber T, Artery Society; European Society of Hypertension Working Group on Vascular Structure, and Function; European Network for Noninvasive Investigation of Large Arteries (2012) Expert consensus document on the measurement of aortic stiffness in daily practice using carotid-femoral pulse wave velocity. J Hypertens 30:445–448

    Article  Google Scholar 

  19. Nemeth ZK, Studinger P, Kiss I, Othmane Tel H, Nemcsik J, Fekete BC, Deak G, Egresits J, Szathmari M, Tisler A (2011) The method of distance measurement and torso length influences the relationship of pulse wave velocity to cardiovascular mortality. Am J Hypertens 24:155–161

    Article  Google Scholar 

  20. Calabia J, Torguet P, Garcia M, Garcia I, Martin N, Guasch B, Faur D, Valles M (2011) Doppler ultrasound in the measurement of pulse wave velocity: agreement with the Complior method. Cardiovasc Ultrasound 9:13

    Article  Google Scholar 

  21. Huang C, Su Y, Zhang H, Qian LX, Luo J (2016) Comparison of different pulse waveforms for local pulse wave velocity measurement in healthy and hypertensive common carotid arteries in vivo. Ultrasound Med Biol 42:1111–1123

    Article  Google Scholar 

  22. Zhu ZQ, Chen LS, Wang H, Liu FM, Luan Y, Wu LL, Liu N, Wang P, Huang H (2019) Carotid stiffness and atherosclerotic risk: non-invasive quantification with ultrafast ultrasound pulse wave velocity. Eur Radiol 29:1507–1517

    Article  Google Scholar 

  23. Pan FS, Xu M, Yu L, Luo J, Li MY, Liang JY, Zheng YL, Xie XY (2019) Relationship between carotid intima-media thickness and carotid artery stiffness assessed by ultrafast ultrasound imaging in patients with type 2 diabetes. Eur J Radiol 111:34–40

    Article  Google Scholar 

  24. Hermeling E, Reesink KD, Kornmann LM, Reneman RS, Hoeks AP (2009) The dicrotic notch as alternative time-reference point to measure local pulse wave velocity in the carotid artery by means of ultrasonography. J Hypertens 27:2028–2035

    Article  CAS  Google Scholar 

  25. van Popele NM, Grobbee DE, Bots ML, Asmar R, Topouchian J, Reneman RS, Hoeks AP, van der Kuip DA, Hofman A, Witteman JC (2001) Association between arterial stiffness and atherosclerosis: the Rotterdam Study. Stroke 32:454–460

    Article  Google Scholar 

  26. Chirinos JA (2012) Arterial stiffness: basic concepts and measurement techniques. J Cardiovasc Transl Res 5:243–255

    Article  Google Scholar 

  27. Lurbe E, Torro I, Garcia-Vicent C, Alvarez J, Fernandez-Fornoso JA, Redon J (2012) Blood pressure and obesity exert independent influences on pulse wave velocity in youth. Hypertension 60:550–555

    Article  CAS  Google Scholar 

  28. Sueta D, Yamamoto E, Tanaka T, Hirata Y, Sakamoto K, Tsujita K, Kojima S, Nishiyama K, Kaikita K, Hokimoto S, Jinnouchi H, Ogawa H (2015) Association of estimated central blood pressure measured non-invasively with pulse wave velocity in patients with coronary artery disease. Int J Cardiol Heart Vasc 8:52–54

    PubMed  PubMed Central  Google Scholar 

  29. Jang SY, Ju EY, Huh EH, Kim JH, Kim DK (2014) Determinants of brachial-ankle pulse wave velocity and carotid-femoral pulse wave velocity in healthy Koreans. J Kor Med Sci 29:798–804

    Article  Google Scholar 

  30. Tambe AA, Demany MA, Zimmerman HA, Mascarenhas E (1972) Angina pectoris and slow flow velocity of dye in coronary arteries—a new angiographic finding. Am Heart J 84:66–71

    Article  CAS  Google Scholar 

  31. Mangieri E, Macchiarelli G, Ciavolella M, Barilla F, Avella A, Martinotti A, Dell'Italia LJ, Scibilia G, Motta P, Campa PP (1996) Slow coronary flow: clinical and histopathological features in patients with otherwise normal epicardial coronary arteries. Cathet Cardiovasc Diagn 37:375–381

    Article  CAS  Google Scholar 

  32. Beltrame JF, Limaye SB, Horowitz JD (2002) The coronary slow flow phenomenon—a new coronary microvascular disorder. Cardiology 97:197–202

    Article  Google Scholar 

  33. Wang Y, Zhang Y, Ma C, Guan Z, Liu S, Zhang W, Li Y, Yang J (2016) Evaluation of left and right atrial function in patients with coronary slow-flow phenomenon using two-dimensional speckle tracking echocardiography. Echocardiography 33:871–880

    Article  CAS  Google Scholar 

  34. Wang Y, Ma C, Zhang Y, Guan Z, Liu S, Li Y, Yang J (2015) Assessment of left and right ventricular diastolic and systolic functions using two-dimensional speckle-tracking echocardiography in patients with coronary slow-flow phenomenon. PLoS ONE 10:e0117979

    Article  Google Scholar 

Download references

Funding

This academic study received financial support by the National Natural Science Foundation of China (Project Number 81871373).

Author information

Authors and Affiliations

Authors

Contributions

CYM, WWY, YHW: Conception and design, analysis and interpretation of data, drafting and final approval of manuscript. JY, DLJ: Drafting and final approval of manuscript. YXY, LXM, FXK: Collection and interpretation of data, drafting and final approval of manuscript.

Corresponding author

Correspondence to Chunyan Ma.

Ethics declarations

Conflicts of interest

The authors declare no conflict of interest.

Ethics approval

Written informed consent was obtained from all participants, and the study protocol was approved by the China Medical University Ethics Committee and complied with the ethical guidelines of the 1975 Declaration of Helsinki.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Code availability

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, W., Wang, Y., Yu, Y. et al. Establishing normal reference value of carotid ultrafast pulse wave velocity and evaluating changes on coronary slow flow. Int J Cardiovasc Imaging 36, 1931–1939 (2020). https://doi.org/10.1007/s10554-020-01908-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10554-020-01908-3

Keywords

Navigation