Skip to main content
Log in

CMR publications from China of the last more than 30 years

  • Review Paper
  • Published:
The International Journal of Cardiovascular Imaging Aims and scope Submit manuscript

Abstract

Cardiovascular magnetic resonance (CMR) is a non-invasive imaging technology, gradually playing an irreplaceable role in the diagnosis and treatment of cardiovascular diseases. This review demonstrates the progress and research highlights of Chinese CMR publications of the last more than 30 years. At initial stage (1988 to 1997), CMR was introduced to evaluate cardiac anatomy, blood flow and ventricular function roughly in China. In the development stage (1998–2007), CMR began to play an important role in the diagnosis of cardiovascular and pericardial disease with the emergence of new techniques, such as myocardial perfusion imaging and magnetic resonance angiography. Since 2008, the development of CMR in China has reached a prosperous period. Cardiovascular disease can be both qualitatively and quantitatively assessment by CMR “one-stop” multi-parameter imaging, including the morphology, function, myocardial perfusion, tissue characteristics, metabolism and even the microstructure of myocardial fibers, which provides comprehensive assessment of the severity, risk stratification and prognosis of cardiovascular disease. Although CMR in China developed very rapidly in recent years, China still needs to put more efforts in CMR research and make greater contributions to the development of CMR in the world.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

CMR:

Cardiovascular magnetic resonance

MR:

Magnetic resonance

MRI:

Magnetic resonance imaging

LV:

Left ventricle

MI:

Myocardial infarction

SPECT:

Single-photon emission computed tomography

CHD:

Congenital heart disease

MRA:

Magnetic resonance angiography

3D CE-MRA:

Three dimensional contrast enhanced MRA

DSA:

Digital subtraction angiography

Dy-DTPA-BMA:

Dysprosium-chelate

PET:

Positron emission tomography

CAD:

Coronary artery diseases

MSCs:

Mesenchymal stem cells

LGE:

Late gadolinium enhancement

HCM:

Hypertrophic cardiomyopathy

PC-MRI:

Phase contrast magnetic resonance imaging

PA:

Pulmonary artery

FT-CMR:

Feature tracking cardiovascular magnetic resonance

ECV:

Extracellular volume

LVNC:

Left ventricular non-compaction

DW-CMR:

Diffusion-weighted cardiovascular magnetic resonance

AHCM:

Apical hypertrophic cardiomyopathy

References

  1. Lauterbur PC (2005) All science is interdisciplinary–from magnetic moments to molecules to men (Nobel lecture). Angew Chem Int Ed Engl 44(7):1004–1011. https://doi.org/10.1002/anie.200462400

    Article  CAS  PubMed  Google Scholar 

  2. Bottomley PA (1982) NMR imaging techiques and applications - a review. Rev Sci Instrum 53(9):1319–1337. https://doi.org/10.1063/1.1137180

    Article  CAS  PubMed  Google Scholar 

  3. Xia Z (1988) Introduction to magnetic resonance imaging for cardiac clinical diagnosis in 1986. Xin Xue Guan Bing Xue Jin Zhan 1(1):45–47. https://doi.org/10.16806/j.cnki.issn.1004-3934.1988.01.016

    Article  Google Scholar 

  4. Zeng R (1989) ECG-gated cardiac magnetic resonance imaging. Zhong Guo Yi Xue Ying Xiang Ji Shu 1(1):6–7. https://doi.org/10.13929/j.1003-3289.1989.01.002

    Article  Google Scholar 

  5. Frahm J, Haase A, Matthaei D (1986) Rapid NMR imaging of dynamic processes using the FLASH technique. Magn Reson Med 3(2):321–327. https://doi.org/10.1002/mrm.1910030217

    Article  CAS  PubMed  Google Scholar 

  6. Qi J, Yao Q (1990) Imaging diagnosis-Magnetic resonance imaging evaluation of cardiac function. Guo Wai Yi Xue 1(6):321–324

    Google Scholar 

  7. Xie D, Ding Y, Chen X, Yang Z (1994) Determination of ventricular functions with cine MR. Chin J Radiol 1(7):444–447

    Google Scholar 

  8. Zhao S, Croisille P, Janier M, Roux JP, Plana A, Magnin I, Revel D (1997) Comparison between qualitative and quantitative wall motion analyses using dipyridamole stress breath-hold cine magnetic resonance imaging in patients with severe coronary artery stenosis. Magn Reson Imaging 15(8):891–898. https://doi.org/10.1016/s0730-725x(97)00005-2

    Article  CAS  PubMed  Google Scholar 

  9. Hu L, Hu W (1994) Magnetic resonance diagnosis and evaluation of cardiac and macrovascular diseases. Chin J Radiol 1(7):437–438

    Google Scholar 

  10. Li KC, Liu Y, Wang X (1997) MRI diagnosis of ventricular aneurysm of myocardial infarction. Chin J Radiol 5:20–23

    Google Scholar 

  11. Yang G, Li S, Shen T, Chen X, Ling M (1995) MRI evaluation of cardiac and paracardiac masses. J Prac Radiol 1(5):257–259

    Google Scholar 

  12. Li S, Yang G, He W, Gong X, Xie S (1994) Comparison of MRI and angiocardiography in complex congenital heart diseases. Chin J Radiol 1(7):452–455

    Google Scholar 

  13. Hu L, Chen X, Han X, Wang J, Liu Z (1997) MRI diagnosis of tricuspid atresia. Chin J Radiol 1(8):26–29

    Google Scholar 

  14. Li L, Zhang W, Lu X, Yu Y, Li L (1998) Two-dimensional coronary MR angiography: an initial report of clinical application. J Clin Radiol 1(1):27–30

    Google Scholar 

  15. Song J, Liu Y, Zhu MJ (1999) Three dimensional dynamic contrast enhanced MR angiography: an analysis of clinical applications on 60 cases. Chin J Radiol 33:9

    Google Scholar 

  16. Foo TKF, Ho VB, Saranathan M, Cheng LQ, Sakuma H, Kraitchman DL, Wu KC, Bluemke DA (2005) Feasibility of integrating high-spatial-resolution 3D breath-hold coronary MR angiography with myocardial perfusion and viability examinations. Radiology 235(3):1025–1030. https://doi.org/10.1148/radiol.2353040090

    Article  PubMed  Google Scholar 

  17. Wang Y, Sun W, Cao G, Meng L, Song L, Du X (2006) Delayed hyperenhancement patterns in occlusive and reperfused myocardial infarcts during different healing stages. J Magn Reson Imaging 24(4):851–857. https://doi.org/10.1002/jmri.20710

    Article  PubMed  Google Scholar 

  18. Zhao S, Revel D, Arteaga C, Canet E, Liu SZ, Hadour G, Forrat R, Oksendal A (2000) Magnetic susceptibility of Dy-DTPA-BMA to reperfused myocardial infarction in an excised dog heart model: evidence of viable myocardium. Chin Med J 113(3):260–264

    CAS  PubMed  Google Scholar 

  19. Wang L, Zhu HY, Tian JM, Huang SD, Kong LS, Lu JP (2007) Magnetic resonance imaging in determination of myocardial ischemia and viability: comparison with positron emission tomography and single-photon emission computed tomography in a porcine model. Acta Radiol 48(5):500–507. https://doi.org/10.1080/02841850701280783

    Article  CAS  PubMed  Google Scholar 

  20. Shi Y, Zhou K, Chen Z, Wang P, Chen C, Huang G, Shen J (1999) The value of the variance of segmental ventricular wall thickness in the diagnosis of coronary artery diseases. J Clin Radiol 1(2):24–26

    Google Scholar 

  21. Zhang ZHZM, Liu YQ (1999) MR imaging of coronary artery bypass graft: a preliminary study. Chin J Radiol 33(7):468–472

    Google Scholar 

  22. Li K, Liu Y, Pang Z (1998) Complex congenetal heart disease: compared study between magnetic resonance imaging and X-ray cardioangiography. Chin J Med Imaging 3:165–168

    Google Scholar 

  23. Liang B, Kong X, Han P, Xu L, Peng Z, Chang S, Jiang L, Zeng J, Dai W, Feng G (2000) A comparative study of MR imaging, echocardiography and X-ray angiography in complex congenital heart disease. J Clin Radiol 1(6):346–350. https://doi.org/10.13437/j.cnki.jcr.2000.06.009

    Article  Google Scholar 

  24. Wang Z, Liu Y, Jing B, Yuan D, Liu H (1999) Aortic dissection: comparsion of SE with GRE cine MRI. J Clin Radiol 18(11):671–673

    Google Scholar 

  25. Ju S, Teng G, Zhang Y, Ma M, Chen F, Ni Y (2006) In vitro labeling and MRI of mesenchymal stem cells from human umbilical cord blood. Magn Reson Imaging 24(5):611–617. https://doi.org/10.1016/j.mri.2005.12.017

    Article  PubMed  Google Scholar 

  26. Qi C, Ma G, Liu N, Shen C, Chen Z, Liu X, Hu Y, Zhang X, Teng G, Ju S, Ma M, Tang Y (2008) Transplantation of magnetically labeled mesenchymal stem cells improves cardiac function in a swine myocardial infarction model. Chin Med J 121(6):544–550

    Article  PubMed  Google Scholar 

  27. Yao Y, Li Y, Ma G, Liu N, Ju S, Jin J, Chen Z, Shen C, Teng G (2011) In vivo magnetic resonance imaging of injected endothelial progenitor cells after myocardial infarction in rats. Mol Imaging Biol 13(2):303–313. https://doi.org/10.1007/s11307-010-0359-0

    Article  PubMed  Google Scholar 

  28. Chang D, Wang YC, Zhang SJ, Bai YY, Liu DF, Zang FC, Wang G, Wang B, Ju S (2015) Visualizing myocardial inflammation in a rat model of type 4 cardiorenal syndrome by dual-modality molecular imaging. Biomaterials 68:67–76. https://doi.org/10.1016/j.biomaterials.2015.07.050

    Article  CAS  PubMed  Google Scholar 

  29. Yang Q, Li KC, Liu X, Bi XM, Liu Z, An J, Zhang A, Jerecic R, Li DB (2009) Contrast-enhanced whole-heart coronary magnetic resonance angiography at 3.0-t a comparative study with X-ray angiography in a single center. J Am Coll Cardiol 54(1):69–76. https://doi.org/10.1016/j.jacc.2009.03.016

    Article  PubMed  PubMed Central  Google Scholar 

  30. Zhang L, Song X, Dong L, Li J, Dou R, Fan Z, An J, Li D (2018) Additive value of 3T cardiovascular magnetic resonance coronary angiography for detecting coronary artery disease. J Cardiovasc Magn Reson 20(1):29. https://doi.org/10.1186/s12968-018-0450-2

    Article  PubMed  PubMed Central  Google Scholar 

  31. He Y, Pang J, Dai Q, Fan Z, An J, Li D (2016) Diagnostic performance of self-navigated whole-heart contrast-enhanced coronary 3-T MR angiography. Radiology 281(2):401–408. https://doi.org/10.1148/radiol.2016152514

    Article  PubMed  Google Scholar 

  32. Wan J, Zhao S (2012) Clinical significance and prognostic value of late gadolinium enhancement on cardiac MRI. Zhong Guo Yi Xue Ying Xiang Ji Shu 28(8):1600–1603. https://doi.org/10.13929/j.1003-3289.2012.08.018

    Article  Google Scholar 

  33. Liu Q, Zhao S, Yan C, Lu M, Jiang S, Zhang Y, Li S, Liu Y, Yang M, He Z (2009) Myocardial viability in chronic ischemic heart disease: comparison of delayed-enhancement magnetic resonance imaging with Tc-99m-sestamibi and F-18-fluorodeoxyglucose single-photon emission computed tomography. Nucl Med Commun 30(8):610–616. https://doi.org/10.1097/MNM.0b013e32832b529e

    Article  CAS  PubMed  Google Scholar 

  34. Yan CW, Zhao SH, Ling J, Li L, Fang W (2013) Cardiovascular magnetic resonance characteristics in children with hypertrophic cardiomyopathy. Circ-Heart Fail 6(5):1013–1020. https://doi.org/10.1161/circheartfailure.113.000414

    Article  Google Scholar 

  35. Fan H, Li S, Lu M, Yin G, Yang X, Lan T, Dai L, Chen X, Li J, Zhang Y, Sirajuddin A, Kellman P, Arai AE, Zhao S (2018) Myocardial late gadolinium enhancement: a head-to-head comparison of motion-corrected balanced steady-state free precession with segmented turbo fast low angle shot. Clin Radiol. https://doi.org/10.1016/j.crad.2018.02.002

    Article  PubMed  Google Scholar 

  36. Lan Y, Zeng Z, Sun A (1994) Clinical application of magnetic resonance imaging in evaluating cardiac function. Yi Xue Li Lun Yu Shi Jian 8:14–17

    Google Scholar 

  37. Li W, Yang T, Zhang Y, Wang H, Gu Q, Zhao ZH, Ni XH, Liu Z-H, Xiong CM, He JG (2016) Characteristics of pulmonary arterial flow derived from phase contrast magnetic resonance imaging in patients with pulmonary arterial hypertension: correlations with right ventricular function and hemodynamics. Int J Clin Exp Med 9(12):23386–23396

    CAS  Google Scholar 

  38. Sun AQ, Zhao B, Li YD, He Q, Li R, Yuan C (2017) Real-time phase-contrast flow cardiovascular magnetic resonance with low-rank modeling and parallel imaging. J Cardiovasc Magn Reson 19:13. https://doi.org/10.1186/s12968-017-0330-1

    Article  Google Scholar 

  39. Liu H, Yang D, Luo Y, Wan K, Wang S, Zhang T, Li W, Zhang Q, Zhen Y, Sun J (2016) Reference values for left ventricular myocardial strains measured by feature-tracking magnetic resonance imaging in Chinese han population. Si Chuan Da Xue Xue Bao 47(4):599–604. https://doi.org/10.13464/j.scuxbyxb.2016.04.030

    Article  Google Scholar 

  40. Yang Y, Wang F, Yin G, Zhao S, Lu M (2019) Left atrial function in healthy Chinese population by cardiac magnetic resonance-feature tracking imaging:a quantitative study. Di Er Jun Yi Da Xue Xue Bao 40(3):250–256. https://doi.org/10.16781/j.0258-879x.2019.03.0250

    Article  Google Scholar 

  41. Shang Q, Patel S, Steinmetz M, Schuster A, Danford DA, Beerbaum P, Sarikouch S, Kutty S (2018) Myocardial deformation assessed by longitudinal strain: chamber specific normative data for CMR-feature tracking from the German competence network for congenital heart defects. Eur Radiol 28(3):1257–1266. https://doi.org/10.1007/s00330-017-5034-2

    Article  PubMed  Google Scholar 

  42. Shang QL, Sarikouch S, Patel S, Schuster A, Steinmetz M, Ou P, Danford DA, Beerbaum P, Kutty S (2017) Assessment of ventriculo-vascular properties in repaired coarctation using cardiac magnetic resonance-derived aortic, left atrial and left ventricular strain. Eur Radiol 27(1):167–177. https://doi.org/10.1007/s00330-016-4373-8

    Article  PubMed  Google Scholar 

  43. Wang J, Li W, Sun J, Liu H, Kang Y, Yang D, Yu L, Greiser A, Zhou X, Han Y, Chen Y (2018) Improved segmental myocardial strain reproducibility using deformable registration algorithms compared with feature tracking cardiac MRI and speckle tracking echocardiography. J Magn Reson Imaging 48(2):404–414. https://doi.org/10.1002/jmri.25937

    Article  CAS  PubMed  Google Scholar 

  44. Lu M, Zhao S, Yin G, Jiang S, Zhao T, Chen X, Tian L, Zhang Y, Wei Y, Liu Q, He Z, Xue H, An J, Shah S (2013) T1 mapping for detection of left ventricular myocardial fibrosis in hypertrophic cardiomyopathy: a preliminary study. Eur J Radiol 82(5):E225–E231. https://doi.org/10.1016/j.ejrad.2012.12.014

    Article  PubMed  Google Scholar 

  45. Shang Y, Zhang X, Leng W, Chen L, Lei X, Zhang T, Greiser A, Liang Z, Wang J (2017) Assessment of diabetic cardiomyopathy by cardiovascular magnetic resonance T1 mapping: correlation with left- ventricular diastolic dysfunction and diabetic duration. J Diabetes Res 2017:9584278. https://doi.org/10.1155/2017/9584278

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Wang S, Hu H, Lu M, Sirajuddin A, Li J, An J, Chen X, Yin G, Lan T, Dai L, Zhang Y, Yin X, Song L, Dang A, Kellman P, Arai AE, Zhao S (2017) Myocardial extracellular volume fraction quantified by cardiovascular magnetic resonance is increased in hypertension and associated with left ventricular remodeling. Eur Radiol 27(11):4620–4630. https://doi.org/10.1007/s00330-017-4841-9

    Article  PubMed  Google Scholar 

  47. Liu X, Hou JL, Yang ZG, Xia CC, Xie LJ, Ye PF, Peng WL, Li L, Yang MX, Guo YK (2018) Native T-1 mapping for characterization of acute and chronic myocardial infarction in swine: comparison with contrast-enhanced MRI. J Magn Reson Imaging 47(5):1406–1414. https://doi.org/10.1002/jmri.25871

    Article  PubMed  Google Scholar 

  48. Cheng H, Zhao S, Jiang S, Lu M, Yan C, Ling J, Zhang Y, Liu Q, Ma N, Yin G, Jerecic R, He Z (2011) The relative atrial volume ratio and late gadolinium enhancement provide additive information to differentiate constrictive pericarditis from restrictive cardiomyopathy. J Cardiovasc Magn Reson. https://doi.org/10.1186/1532-429x-13-15

    Article  PubMed  PubMed Central  Google Scholar 

  49. Cheng H, Lu M, Hou C, Chen X, Li L, Wang J, Yin G, Chen X, Wei X, Cui C, Chu J, Zhang S, Prasad SK, Pu J, Zhao S (2015) Comparison of cardiovascular magnetic resonance characteristics and clinical consequences in children and adolescents with isolated left ventricular non-compaction with and without late gadolinium enhancement. J Cardiovasc Magn Reson 17(1):44. https://doi.org/10.1186/s12968-015-0148-7

    Article  PubMed  PubMed Central  Google Scholar 

  50. Wan J, Zhao S, Cheng H, Lu M, Jiang S, Yin G, Gao X, Yang Y (2013) Varied distributions of late gadolinium enhancement found among patients meeting cardiovascular magnetic resonance criteria for isolated left ventricular non-compaction. J Cardiovasc Magn Reson 15(1):20. https://doi.org/10.1186/1532-429x-15-20

    Article  PubMed  PubMed Central  Google Scholar 

  51. Lu M, Zhao S, Jiang S, Yin G, Wang C, Zhang Y, Liu Q, Cheng H, Ma N, Zhao T, Chen X, Huang J, Zou Y, Song L, He Z, An J, Renate J, Xue H, Shah S (2013) Fat deposition in dilated cardiomyopathy assessed by CMR. Jacc-Cardiovascular Imaging 6(8):889–898. https://doi.org/10.1016/j.jcmg.2013.04.010

    Article  PubMed  Google Scholar 

  52. Nguyen C, Lu M, Fan Z, Bi X, Kellman P, Zhao S, Li D (2015) Contrast-free detection of myocardial fibrosis in hypertrophic cardiomyopathy patients with diffusion-weighted cardiovascular magnetic resonance. J Cardiovasc Magn Reson 17:107. https://doi.org/10.1186/s12968-015-0214-1

    Article  PubMed  PubMed Central  Google Scholar 

  53. Lu M, Du H, Gao Z, Song L, Cheng H, Zhang Y, Yin G, Chen X, Ling J, Jiang Y, Wang H, Li J, Huang J, He Z, Zhao S (2016) Predictors of outcome after alcohol septal ablation for hypertrophic obstructive cardiomyopathy an echocardiography and cardiovascular magnetic resonance imaging study. Circ Cardiovasc Interv. https://doi.org/10.1161/circinterventions.115.002675

    Article  PubMed  Google Scholar 

  54. Wu B, Lu M, Zhang Y, Song B, Ling J, Huang J, Yin G, Lan T, Dai L, Song L, Jiang Y, Wang H, He Z, Lee J, Yong HS, Patel MB, Zhao S (2017) CMR assessment of the left ventricle apical morphology in subjects with unexplainable giant T-wave inversion and without apical wall thickness ≥ 15mm. Eur Heart J Cardiovasc Imaging 18(2):186–194. https://doi.org/10.1093/ehjci/jew045

    Article  PubMed  Google Scholar 

  55. Lin L, Li X, Feng J, Shen KN, Tian Z, Sun J, Mao YY, Cao J, Jin ZY, Li J, Selvanayagam JB, Wang YN (2018) The prognostic value of T1 mapping and late gadolinium enhancement cardiovascular magnetic resonance imaging in patients with light chain amyloidosis. J Cardiovasc Magn Reson 20(1):2. https://doi.org/10.1186/s12968-017-0419-6

    Article  PubMed  PubMed Central  Google Scholar 

  56. Inoue Y, Yang X, Nagao M, Higashino H, Hosokawa K, Kido T, Kurata A, Okayama H, Higaki J, Mochizuki T, Murase K (2010) Peri-infarct dysfunction in post-myocardial infarction: assessment of 3-T tagged and late enhancement MRI. Eur Radiol 20(5):1139–1148. https://doi.org/10.1007/s00330-009-1657-2

    Article  PubMed  Google Scholar 

  57. Liu W, Xie Y, Wang C, Du Y, Nguyen C, Wang Z, Fan Z, Dong L, Liu Y, Bi X, An J, Gu C, Yu W, Li D (2018) Atherosclerosis T1-weighted characterization (CATCH): evaluation of the accuracy for identifying intraplaque hemorrhage with histological validation in carotid and coronary artery specimens. J Cardiovasc Magn Reson 20(1):27. https://doi.org/10.1186/s12968-018-0447-x

    Article  PubMed  PubMed Central  Google Scholar 

  58. Zhang N, Yang G, Gao Z, Xu C, Zhang Y, Shi R, Keegan J, Xu L, Zhang H, Fan Z, Firmin D (2019) Deep learning for diagnosis of chronic myocardial infarction on nonenhanced cardiac cine MRI. Radiology 291(3):606–617. https://doi.org/10.1148/radiol.2019182304

    Article  PubMed  Google Scholar 

Download references

Funding

This review was funded by the Research Grant of National Natural Science Foundation of China (81771811, 81971588), Construction Research Project of Key Laboratory (Cultivation) of Chinese Academy of Medical Sciences (2019PT310025), the capital health research and development of special (2020-2-4034), Clinical and Translational Fund of Chinese Academy of Medical Sciences (2019XK320063), Education Reform Project of Peking Union Medical College (10023201900204), and Capital Clinically Characteristic Applied Research Fund (Z191100006619021).

Author information

Authors and Affiliations

Authors

Contributions

All authors have contributed to the design of this systematic review, manuscript review and editing, and final approval of the manuscript.

Corresponding authors

Correspondence to Shihua Zhao or Minjie Lu.

Ethics declarations

Conflict of interest

Di Zhou declares that she has no conflict of interest. Jing Xu declares that she has no conflict of interest. Shihua Zhao declares that he has no conflict of interest. Minjie Lu declares that he has no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, D., Xu, J., Zhao, S. et al. CMR publications from China of the last more than 30 years. Int J Cardiovasc Imaging 36, 1737–1747 (2020). https://doi.org/10.1007/s10554-020-01873-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10554-020-01873-x

Keywords

Navigation