Skip to main content

Advertisement

Log in

Cardiac cine CT approaching 1 mSv: implementation and assessment of a 58-ms temporal resolution protocol

  • Original Paper
  • Published:
The International Journal of Cardiovascular Imaging Aims and scope Submit manuscript

Abstract

Clinical use of cardiac cine CT imaging is limited by high radiation dose and low temporal resolution. To evaluate a low radiation dose, high temporal resolution cardiac cine CT protocol in human cardiac CT and phantom scans. CT scans of a circulating iodine target were reconstructed using the conventional single heartbeat half-scan (HS, approx. 175 ms temporal resolution) and the 3-heartbeat multi-segment (MS, approx. 58 ms) algorithms. Motion artifacts were quantified by the root-mean-square error (RMSE). Low-dose cardiac cine CT scans were performed in 55 subjects at a tube potential of 80 kVp and current of 80 mA. Image quality of HS and MS scans was assessed by blinded reader quality assessment, left ventricular (LV) free wall motion, and LV ejection rate. Motion artifacts in phantom scans were higher in HS than in MS reconstructions (RSME 188 and 117 HU, respectively; p = 0.001). Median radiation dose in human scans was 1.2 mSv. LV late diastolic filling was observed more frequently in MS than in HS images (42 vs. 26 subjects, respectively; p < 0.001). LV free wall systolic motion was more physiologic and had less error in MS than in HS reconstructions (sum-of-squared errors 34 vs. 45 mm2, respectively; p < 0.001), and LV peak ejection rate was higher in MS than in HS reconstructions (166 vs. 152 mL/s, respectively; p < 0.001). Cardiac cine CT imaging is feasible at a low radiation dose of 1.2 mSv. MS reconstruction showed improved imaging of rapid motion in phantom studies and human cardiac CTs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

Not available due to privacy concerns.

References

  1. Amzulescu MS, De Craene M, Langet H, Pasquet A, Vancraeynest D, Pouleur AC, Vanoverschelde JL, Gerber BL (2019) Myocardial strain imaging: review of general principles, validation, and sources of discrepancies. Eur Hear J Cardiovasc Imaging 20:605–619. https://doi.org/10.1093/ehjci/jez041

    Article  CAS  Google Scholar 

  2. Krishnamurthy R, Pednekar A, Cheong B, Muthupillai R (2010) High temporal resolution SSFP cine MRI for estimation of left ventricular diastolic parameters. J Magn Reson Imaging 31:872–880. https://doi.org/10.1002/jmri.22123

    Article  PubMed  Google Scholar 

  3. Zhu M, Streiff C, Panosian J, Zhang Z, Song X, Sahn DJ, Ashraf M (2015) Regional strain determination and myocardial infarction detection by three-dimensional echocardiography with varied temporal resolution. Echocardiography 32:339–348. https://doi.org/10.1111/echo.12632

    Article  PubMed  Google Scholar 

  4. Behar JM, Rajani R, Pourmorteza A, Preston R, Razeghi O, Niederer S, Adhya S, Claridge S, Jackson T, Sieniewicz B, Gould J, Carr-White G, Razavi R, McVeigh E, Rinaldi CA (2017) Comprehensive use of cardiac computed tomography to guide left ventricular lead placement in cardiac resynchronization therapy. Heart Rhythm 14:1364–1372. https://doi.org/10.1016/j.hrthm.2017.04.041

    Article  PubMed  PubMed Central  Google Scholar 

  5. Tee MW, Won S, Raman FS, Yi C, Vigneault DM, Davies-Venn C, Liu S, Lardo AC, Lima JAC, Noble JA, Emter CA, Bluemke DA (2015) Regional strain analysis with multidetector CT in a swine cardiomyopathy model: relationship to cardiac MR tagging and myocardial fibrosis. Radiology 277:88–94. https://doi.org/10.1148/radiol.2015142339

    Article  PubMed  PubMed Central  Google Scholar 

  6. Han BK, Hlavacek AM, Kay WA, Pham TDN, Grant K, Garberich RF, Lesser JR, Raman SV (2016) Multi-institutional evaluation of the indications and radiation dose of functional cardiovascular computed tomography (CCT) imaging in congenital heart disease. Int J Cardiovasc Imaging 32:339–346. https://doi.org/10.1007/s10554-015-0775-y

    Article  PubMed  Google Scholar 

  7. Pasricha SS, Nandurkar D, Seneviratne SK, Cameron JD, Crossett M, Schneider-Kolsky ME, Troupis JM (2009) Image quality of coronary 320-MDCT in patients with atrial fibrillation: initial experience. Am J Roentgenol 193:1514–1521. https://doi.org/10.2214/AJR.09.2319

    Article  Google Scholar 

  8. Einstein AJ, Elliston CD, Arai AE, Chen MY, Mather R, Pearson GDN, DeLaPaz RL, Nickoloff E, Dutta A, Brenner DJ (2010) Radiation dose from single-heartbeat coronary CT angiography performed with a 320–detector row volume scanner. Radiology 254:698–706. https://doi.org/10.1148/radiol.09090779

    Article  PubMed  PubMed Central  Google Scholar 

  9. Hausleiter J, Meyer T, Hadamitzky M, Huber E, Zankl M, Martinoff S, Kastrati A, Schömig A (2006) Radiation dose estimates from cardiac multislice computed tomography in daily practice. Circulation 113:1305–1310. https://doi.org/10.1161/CIRCULATIONAHA.105.602490

    Article  PubMed  Google Scholar 

  10. van der Wall EE, de Graaf FR, van Velzen JE, Jukema JW, Schuijf JD, Bax JJ (2011) Functional analysis by 64-slice CT scanning: prediction of left ventricular dysfunction together with reduction in radiation exposure? Int J Cardiovasc Imaging 27:1089–1093. https://doi.org/10.1007/s10554-010-9771-4

    Article  PubMed  Google Scholar 

  11. Groves DW, Olivieri LJ, Shanbhag SM, Bronson KC, Yu JH, Nelson EA, Rollison SF, Stagliano MS, John AS, Kuehl K, Chen MY (2017) Feasibility of low radiation dose retrospectively-gated cardiac CT for functional analysis in adult congenital heart disease. Int J Cardiol 228:180–183. https://doi.org/10.1016/j.ijcard.2016.11.108

    Article  PubMed  Google Scholar 

  12. Lesser AM, Newell MC, Samara MA, Gornick C, Grant K, Garberich R, Han BK (2016) Radiation dose and image quality of 70 kVp functional cardiovascular computed tomography imaging in congenital heart disease. J Cardiovasc Comput Tomogr 10:173–178. https://doi.org/10.1016/j.jcct.2015.12.009

    Article  PubMed  Google Scholar 

  13. Achenbach S, Ropers D, Holle J, Muschiol G, Daniel WG, Moshage W (2000) In-plane coronary arterial motion velocity: measurement with electron-beam CT. Radiology 216:457–463. https://doi.org/10.1148/radiology.216.2.r00au19457

    Article  CAS  PubMed  Google Scholar 

  14. IRCP (2007) Preface, executive summary and glossary. Ann ICRP 37:9–34. https://doi.org/10.1016/j.icrp.2007.10.003

    Article  Google Scholar 

  15. Schneider CA, Rasband WS, Eliceiri KW (2012) NIH Image to ImageJ: 25 years of image analysis. Nat Methods 9:671–675

    Article  CAS  Google Scholar 

  16. Li J, Denney TS (2006) Left ventricular motion reconstruction with a prolate spheroidal B-spline model. Phys Med Biol 51:517–537. https://doi.org/10.1088/0031-9155/51/3/004

    Article  PubMed  Google Scholar 

  17. Ozturk C, McVeigh ER (2000) Four-dimensional B-spline based motion analysis of tagged MR images: introduction and in vivo validation. Phys Med Biol 45:1683–1702. https://doi.org/10.1088/0031-9155/45/6/319

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Negoita M, Zolgharni M, Dadkho E, Pernigo M, Mielewczik M, Cole GD, Dhutia NM, Francis DP (2016) Frame rate required for speckle tracking echocardiography: A quantitative clinical study with open-source, vendor-independent software. Int J Cardiol 218:31–36. https://doi.org/10.1016/j.ijcard.2016.05.047

    Article  PubMed  Google Scholar 

  19. Kawel-Boehm N, Maceira A, Valsangiacomo-Buechel ER, Vogel-Claussen J, Turkbey EB, Williams R, Plein S, Tee M, Eng J, Bluemke DA (2015) Normal values for cardiovascular magnetic resonance in adults and children. J Cardiovasc Magn Reson 17:29. https://doi.org/10.1186/s12968-015-0111-7

    Article  PubMed  PubMed Central  Google Scholar 

  20. Smiseth OA, Torp H, Opdahl A, Haugaa KH, Urheim S (1207b) Myocardial strain imaging: how useful is it in clinical decision making? Eur Heart J 37:1196–1207b

    Article  Google Scholar 

Download references

Acknowledgements

We thank Rolf Symons, currently at the University Hospitals Leuven, for his constructive feedback on the manuscript and Amir Pourmorteza, currently at Emory University, for his critical review of the manuscript.

Funding

Intramural NIH program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Veit Sandfort.

Ethics declarations

Conflicts of interest

The authors declare that they have no conflict of interest.

Ethics approval

NIH IRB approval.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

10554_2020_1863_MOESM1_ESM.tif

Supplemental figure 1. Schematic images of an iodine-filled 50 mL conical tube (left) fixed in the center of an orbital shaker (right). (TIF 6938 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Choi, Y.J., Ahlman, M.A., Mallek, M. et al. Cardiac cine CT approaching 1 mSv: implementation and assessment of a 58-ms temporal resolution protocol. Int J Cardiovasc Imaging 36, 1583–1591 (2020). https://doi.org/10.1007/s10554-020-01863-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10554-020-01863-z

Keywords

Navigation