Skip to main content
Log in

Simultaneous evaluation of plaque stability and ischemic potential of coronary lesions in a fluid–structure interaction analysis

  • Original Paper
  • Published:
The International Journal of Cardiovascular Imaging Aims and scope Submit manuscript

Abstract

The measurement of fractional flow reserve (FFR) and superficial wall stress (SWS) identifies inducible myocardial ischemia and plaque vulnerability, respectively. A simultaneous evaluation of both FFR and SWS is still lacking, while it may have a major impact on therapy. A new computational model of one-way fluid–structure interaction (FSI) was implemented and used to perform a total of 54 analyses in virtual coronary lesion models, based on plaque compositions, arterial remodeling patterns, and stenosis morphologies under physiological conditions. Due to a greater lumen dilation and more induced strain, FFR in the lipid-rich lesions (0.81 ± 0.15) was higher than that in fibrous lesions (0.79 ± 0.16, P = 0.001) and calcified lesions (0.79 ± 0.16, P = 0.001). Four types of lesions were further defined, based on the combination of cutoff values for FFR (0.80) and maximum relative SWS (30 kPa): The level of risk increased from (1) plaques with mild-to-moderate stenosis but negative remodeling for lipid-rich (Type A: non-ischemic, stable) to (2) lipid-rich plaques with mild-to-moderate stenosis and without-to-positive remodeling (Type B: non-ischemic, unstable) or plaques with severe stenosis but negative remodeling for lipid-rich (Type C: ischemic, stable) to (3) lipid-rich plaques with severe stenosis and without-to-positive remodeling (Type D: ischemic, unstable). The analysis of FSI to simultaneously evaluate inducible myocardial ischemia and plaque stability may be useful to identify coronary lesions at a high risk and to ultimately optimize treatment. Further research is warranted to assess whether a more aggressive treatment may improve the prognosis of patients with non-ischemic, intermediate, and unstable lesions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

CFD:

Computational fluid dynamics

DS%:

Percent diameter stenosis

FEA:

Finite element analysis

FFR:

Fractional flow reserve

FSI:

Fluid–structure interaction

MLD:

Minimum lumen diameter

rSWS:

Relative superficial wall stress

References

  1. Taylor CA, Fonte TA, Min JK (2013) Computational fluid dynamics applied to cardiac computed tomography for noninvasive quantification of fractional flow reserve: scientific basis. J Am Coll Cardiol 61(22):2233–2241

    Article  PubMed  Google Scholar 

  2. Van De Hoef TP, Meuwissen M, Escaned J, Davies JE, Siebes M, Spaan JAE, Piek JJ (2013) Fractional flow reserve as a surrogate for inducible myocardial ischaemia. Nat Rev Cardiol 7(8):439–452

    Article  Google Scholar 

  3. Pijls NHJ, Tanaka N, Fearon WF (2013) Functional assessment of coronary stenoses: can we live without it? Eur Heart J 34(18):1335–1344

    Article  PubMed  Google Scholar 

  4. Itu L, Rapaka S, Passerini T, Georgescu B, Schwemmer C, Schoebinger M, Flohr T, Sharma P, Comaniciu D (2016) A machine-learning approach for computation of fractional flow reserve from coronary computed tomography. J Appl Physiol 121(1):42–52

    Article  PubMed  Google Scholar 

  5. Tu S, Barbato E, Köszegi Z, Yang J, Sun Z, Holm NR, Tar B, Li Y, Rusinaru D, Wijns W, Reiber JHC (2014) Fractional flow reserve calculation from 3-dimensional quantitative coronary angiography and TIMI frame count. JACC Cardiovasc Interv 7(7):768–777

    Article  PubMed  Google Scholar 

  6. Wu X, von Birgelen C, Li Z, Zhang S, Huang J, Liang F, Li Y, Wijns W, Tu S (2018) Assessment of superficial coronary vessel wall deformation and stress: validation of in silico models and human coronary arteries in vivo. Int J Cardiovasc Imaging 34(2):1–13

    CAS  Google Scholar 

  7. Kwak BR, Baeck M, Bochaton-Piallat M-L, Caligiuri G, Daemens MJAP, Davies PF, Hoefer IE, Holvoet P, Jo H, Krams R, Lehoux S, Monaco C, Steffens S, Virmani R, Weber C, Wentzel JJ, Evans PC (2014) Biomechanical factors in atherosclerosis: mechanisms and clinical implications. Eur Heart J 35(43):3013–3020

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Ohayon J, Finet G, Le Floc’h S, Cloutier G, Gharib AM, Heroux J, Pettigrew RI (2014) Biomechanics of atherosclerotic coronary plaque: site, stability and in vivo elasticity modeling. Ann Biomed Eng 42(2):269–279

    Article  PubMed  Google Scholar 

  9. Brown AJ, Teng Z, Calvert PA, Rajani NK, Hennessy O, Nerlekar N, Obaid DR, Costopoulos C, Huang Y, Hoole SP, Goddard M, West NEJ, Gillard JH, Bennett MR (2016) Plaque structural stress estimations improve prediction of future major adverse cardiovascular events after intracoronary imaging. Circ Cardiovasc Imaging 9(6):e004172

    Article  PubMed  Google Scholar 

  10. Holzapfela GA, Mulvihillb JJ, Cunnaneb EM, Walshb MT (2014) Computational approaches for analyzing the mechanics of atherosclerotic plaques: a review. J Biomech 47(4):859–869

    Article  Google Scholar 

  11. Akyildiz AC, Speelman L, Gijsen FJH (2014) Mechanical properties of human atherosclerotic intima tissue. J Biomech 47(4):773–783

    Article  PubMed  Google Scholar 

  12. Thondapu V, Bourantas CV, Foin N, Jang I-K, Serruys PW, Barlis P (2016) Biomechanical stress in coronary atherosclerosis: emerging insights from computational modelling. Eur Heart J 38(2):81–92

    Google Scholar 

  13. Wu X, von Birgelen C, Muramatsu T, Li Y, Holm NR, Reiber JHC, Tu S (2017) A novel four-dimensional angiographic approach to assess dynamic superficial wall stress of coronary arteries in vivo: initial experience in evaluating vessel sites with subsequent plaque rupture. EuroIntervention 13(9):1099–1103

    Article  Google Scholar 

  14. Kock SA, Nygaard JV, Eldrup N, Fründ E-T, Klærke A, Paaske WP, Falk E, Kim WY (2008) Mechanical stresses in carotid plaques using MRI-based fluid-structure interaction models. J Biomech 41(8):1651–1658

    Article  PubMed  Google Scholar 

  15. Teng Zhongzhao, Canton Gador, Yuan Chun, Ferguson Marina, Yang Chun, Huang Xueying, Zheng Jie, Woodard Pamela K, Tang Dalin (2010) 3D critical plaque wall stress is a better predictor of carotid plaque rupture sites than flow shear stress: an in vivo MRI-based 3D FSI study. J Biomech Eng-Trans ASME 132(3):031007

    Article  Google Scholar 

  16. Tang D, Yang C, Kobayashi S, Zheng J, Woodard PK, Teng Z, Billiar K, Bach R, Ku DN (2009) 3D MRI-based anisotropic FSI models with cyclic bending for human coronary atherosclerotic plaque mechanical analysis. J Biomech Eng-Trans ASME 131(6):061010

    Article  Google Scholar 

  17. Marques KMJ, Spruijt HJ, Boer C, Westerhof N, Visser CA, Visser FC (2002) The diastolic flow-pressure gradient relation in coronary stenoses in humans. J Am Coll Cardiol 39(10):1630–1636

    Article  PubMed  Google Scholar 

  18. Ohayon J, Dubreuil O, Tracqui P, Le Floc’h S, Rioufol G, Chalabreysse L, Thivolet F, Pettigrew RI, Finet G (2007) Influence of residual stress/strain on the biomechanical stability of vulnerable coronary plaques: potential impact for evaluating the risk of plaque rupture. A J Physiol-Heart Circ Physiol 293(3):H1987–H1996

    Article  CAS  Google Scholar 

  19. Wolf K, Bayrasy P, Brodbeck C, Kalmykov I, Oeckerath A, Wirth N (2017) MpCCI neutral interfaces for multiphysics simulations. Springer, New York

    Book  Google Scholar 

  20. Young DF, Cholvin NR, Kirkeeide RL, Roth AC (1977) Hemodynamics of arterial stenoses at elevated flow rates. Circ Res 41(1):99–107

    Article  CAS  PubMed  Google Scholar 

  21. Costopoulos C, Huang Y, Brown AJ, Calvert PA, Hoole SP, West NEJ, Gillard JH, Teng Z, Bennett MR (2017) Plaque rupture in coronary atherosclerosis is associated with increased plaque structural stress. JACC Cardiovasc Imaging 10:1472

    Article  PubMed  PubMed Central  Google Scholar 

  22. Chu M, von Birgelen C, Li Y, Westra J, Yang J, Holm NR, Reiber JHC, Wijns W, Tu S (2018) Quantification of disturbed coronary flow by disturbed vorticity index and relation with fractional flow reserve. Atherosclerosis 273:136–144

    Article  CAS  PubMed  Google Scholar 

  23. Stroud JS, Berger SA, Saloner D (2000) Influence of stenosis morphology on flow through severely stenotic vessels: implications for plaque rupture. J Biomech 33(4):443–455

    Article  CAS  PubMed  Google Scholar 

  24. Pijls NHJ, Sels J-W (2012) Functional measurement of coronary stenosis. J Am Coll Cardiol 59(12):1045–1057

    Article  PubMed  Google Scholar 

  25. Tonino PAL, De Bruyne B, Pijls NHJ, Siebert U, Ikeno F, vant Veer M, Klauss V, Manoharan G, Engstrøm T, Oldroyd KG, Ver Lee PN, Maccarthy PA, Fearon WF (2009) Fractional flow reserve versus angiography for guiding percutaneous coronary intervention. N Engl J Med 360(3):213–224

    Article  CAS  PubMed  Google Scholar 

  26. De Bruyne B, Pijls NHJ, Kalesan B, Barbato E, Tonino PAL, Piroth Z, Jagic N, Möbius-Winkler S, Rioufol G, Witt N, Kala P, MacCarthy P, Engström T, Oldroyd KG, Mavromatis K, Manoharan G, Verlee P, Frobert O, Curzen N, Johnson JB, Jüni P, Fearon WF (2012) Fractional flow reserve–guided PCI versus medical therapy in stable coronary disease. N Engl J Med 367(11):991–1001

    Article  CAS  PubMed  Google Scholar 

  27. Mosher P, Ross J, Mcfate PA, Shaw RF (1964) Control of coronary blood flow by an autoregulatory mechanism. Circ Res 14(3):250–259

    Article  CAS  PubMed  Google Scholar 

  28. Hoffman JIE (2000) Problems of coronary flow reserve. Ann Biomed Eng 28(8):884–896

    Article  CAS  PubMed  Google Scholar 

  29. Choi G, Lee JM, Kim HJ, Park JB, Sankaran S, Otake H, Doh JH, Nam CW, Shin ES, Taylor CA (2015) Coronary artery axial plaque stress and its relationship with lesion geometry: application of computational fluid dynamics to coronary CT angiography. JACC Cardiovasc Imaging 8(10):1156–1166

    Article  PubMed  Google Scholar 

Download references

Funding

This study was funded by the National Natural Science Foundation of China (Grant No. 81871460), Program of Shanghai Technology Research Leader, and research programs from Shanghai Jiao Tong University (YG2016ZD09 and YG2015ZD04).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shengxian Tu.

Ethics declarations

Conflict of interest

ST has received a research grant from Medis medical imaging and Pulse medical imaging technology. CvB indicated institutional research grants to the research department of TC Twente by Abbott Vascular, Boston Scientific, Biotronik and Medtronic (not related to the present study). XW declares that he has no conflict of interest. SZ declares that she has no conflict of interest. DX declares that she has no conflict of interest. JH declares that she has no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

10554_2019_1611_MOESM1_ESM.avi

Supplementary material 1 Video 1: Dynamic relative superficial wall stress of fluid-structure interaction analysis of 10 mm-long lipid-rich plaques with 50% diameter stenosis and without arterial remodeling (AVI 5668 kb)

10554_2019_1611_MOESM2_ESM.avi

Supplementary material 2 Video 2: Blood flow velocity of fluid-structure interaction analysis of 10 mm-long lipid-rich plaques with 50% diameter stenosis and without arterial remodeling (AVI 371 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, X., von Birgelen, C., Zhang, S. et al. Simultaneous evaluation of plaque stability and ischemic potential of coronary lesions in a fluid–structure interaction analysis. Int J Cardiovasc Imaging 35, 1563–1572 (2019). https://doi.org/10.1007/s10554-019-01611-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10554-019-01611-y

Keywords

Navigation