Skip to main content
Log in

Biomechanics of Atherosclerotic Coronary Plaque: Site, Stability and In Vivo Elasticity Modeling

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Coronary atheroma develop in local sites that are widely variable among patients and are considerably variable in their vulnerability for rupture. This article summarizes studies conducted by our collaborative laboratories on predictive biomechanical modeling of coronary plaques. It aims to give insights into the role of biomechanics in the development and localization of atherosclerosis, the morphologic features that determine vulnerable plaque stability, and emerging in vivo imaging techniques that may detect and characterize vulnerable plaque. Composite biomechanical and hemodynamic factors that influence the actual site of development of plaques have been studied. Plaque vulnerability, in vivo, is more challenging to assess. Important steps have been made in defining the biomechanical factors that are predictive of plaque rupture and the likelihood of this occurring if characteristic features are known. A critical key in defining plaque vulnerability is the accurate quantification of both the morphology and the mechanical properties of the diseased arteries. Recently, an early IVUS based palpography technique developed to assess local strain, elasticity and mechanical instabilities has been successfully revisited and improved to account for complex plaque geometries. This is based on an initial best estimation of the plaque components’ contours, allowing subsequent iteration for elastic modulus assessment as a basis for plaque stability determination. The improved method has also been preliminarily evaluated in patients with successful histologic correlation. Further clinical evaluation and refinement are on the horizon.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References:

  1. Arroyo, L. H., and R. T. Lee. Mechanisms of plaque rupture: mechanical and biologic interactions. Cardiovasc. Res. 41:369–375, 1999.

    Article  CAS  PubMed  Google Scholar 

  2. Baldewsing, R. A., F. Mastik, J. A. Schaar, P. W. Serruys, and A. F. van der Steen. Young’s modulus reconstruction of vulnerable atherosclerotic plaque components using deformable curves. Ultrasound Med. Biol. 32:201–210, 2006.

    Article  PubMed  Google Scholar 

  3. Baldewsing, R. A., J. A. Schaar, F. Mastik, C. W. Oomens, and A. F. van der Steen. Assessment of vulnerable plaque composition by matching the deformation of a parametric plaque model to measured plaque deformation. IEEE Trans. Med. Imaging 24:514–528, 2005.

    Article  PubMed  Google Scholar 

  4. Baldewsing, R. A., J. A. Schaar, F. Mastik, and A. F. van der Steen. Local elasticity imaging of vulnerable atherosclerotic coronary plaques. Adv. Cardiol. 44:35–61, 2007.

    Article  PubMed  Google Scholar 

  5. Briley-Saebo, K. C., W. J. Mulder, V. Mani, F. Hyafil, V. Amirbekian, J. G. Aguinaldo, E. A. Fisher, and Z. A. Fayad. Magnetic resonance imaging of vulnerable atherosclerotic plaques: current imaging strategies and molecular imaging probes. J. Magn. Reson. Imaging 26:460–479, 2007.

    Article  PubMed  Google Scholar 

  6. Carlier, S. G., and K. Tanaka. Studying coronary plaque regression with IVUS: a critical review of recent studies. J. Interv. Cardiol. 19:11–15, 2006.

    Article  PubMed  Google Scholar 

  7. Cespedes, E. I., C. L. de Korte, and A. F. van der Steen. Intraluminal ultrasonic palpation: assessment of local and cross-sectional tissue stiffness. Ultrasound Med. Biol. 26:385–396, 2000.

    Article  CAS  PubMed  Google Scholar 

  8. Cespedes, I., J. Ophir, H. Ponnekanti, and N. Maklad. Elastography: elasticity imaging using ultrasound with application to muscle and breast in vivo. Ultrason. Imaging 15:73–88, 1993.

    CAS  PubMed  Google Scholar 

  9. Chan, R. C. OCT-based arterial elastography: robust estimation exploiting tissue biomechanics. Opt. Express 12:4558–4572, 2004.

    Article  CAS  PubMed  Google Scholar 

  10. Chandran, K. B., J. H. Mun, K. K. Choi, J. S. Chen, A. Hamilton, A. Nagaraj, and D. D. McPherson. A method for in vivo analysis for regional arterial wall material property alterations with atherosclerosis: preliminary results. Med. Eng. Phys. 25:289–298, 2003.

    Article  CAS  PubMed  Google Scholar 

  11. Chatzizisis, Y. S., A. U. Coskun, M. Jonas, E. R. Edelman, C. L. Feldman, and P. H. Stone. Role of endothelial shear stress in the natural history of coronary atherosclerosis and vascular remodeling: molecular, cellular, and vascular behavior. J. Am. Coll. Cardiol. 49:2379–2393, 2007.

    Article  CAS  PubMed  Google Scholar 

  12. Chau, A. H., R. C. Chan, M. Shishkov, B. MacNeill, N. Iftimia, G. J. Tearney, R. D. Kamm, B. E. Bouma, and M. R. Kaazempur-Mofrad. Mechanical Analysis of Atherosclerotic Plaques Based on Optical Coherence Tomography. Ann. Biomed. Eng. 32:1494, 2004.

    Article  PubMed  Google Scholar 

  13. Cheng, G. C., H. M. Loree, R. D. Kamm, M. C. Fishbein, and R. T. Lee. Distribution of circumferential stress in ruptured and stable atherosclerotic lesions. A structural analysis with histopathological correlation. Circulation 87:1179–1187, 1993.

    Article  CAS  PubMed  Google Scholar 

  14. Cheruvu, P. K., A. V. Finn, C. Gardner, J. Caplan, J. Goldstein, G. W. Stone, R. Virmani, and J. E. Muller. Frequency and distribution of thin-cap fibroatheroma and ruptured plaques in human coronary arteries: a pathologic study. J. Am. Coll. Cardiol. 50:940–949, 2007.

    Article  PubMed  Google Scholar 

  15. Choudhury, R. P., V. Fuster, and Z. A. Fayad. Molecular, cellular and functional imaging of atherothrombosis. Nat. Rev. Drug Discov. 3:913–925, 2004.

    Article  CAS  PubMed  Google Scholar 

  16. Cilla, M., E. Pena, and M. A. Martinez. 3D computational parametric analysis of eccentric atheroma plaque: influence of axial and circumferential residual stresses. Biomech. Model. Mechanobiol. 11:1001–1013, 2012.

    Article  CAS  PubMed  Google Scholar 

  17. de Korte, C. L., S. G. Carlier, F. Mastik, M. M. Doyley, A. F. van der Steen, P. W. Serruys, and N. Bom. Morphological and mechanical information of coronary arteries obtained with intravascular elastography; feasibility study in vivo. Eur. Heart J. 23:405–413, 2002.

    Article  PubMed  Google Scholar 

  18. de Korte, C. L., H. A. Woutman, A. F. van der Steen, G. Pasterkamp, and E. I. Cespedes. Vascular tissue characterisation with IVUS elastography. Ultrasonics 38:387–390, 2000.

    Article  PubMed  Google Scholar 

  19. Deleaval, F., A. Bouvier, G. Finet, G. Cloutier, S. K. Yazdani, S. Le Floc’h, P. Clarysse, R. I. Pettigrew, and J. Ohayon. The intravascular ultrasound elasticity-palpography technique revisited: A reliable tool for the in vivo detection of vulnerable coronary atherosclerotic plaques. Ultrasound Med. Biol. 39(8):1469–1481, 2013.

    Article  PubMed  Google Scholar 

  20. Delfino, A., N. Stergiopulos, J. E. Moore, and J. J. Meister. Residual strain effects on the stress field in a thick wall finite element model of the human carotid bifurcation. J. Biomech. 30:777–786, 1997.

    Article  CAS  PubMed  Google Scholar 

  21. Doyley, M. M. Model-based elastography: a survey of approaches to the inverse elasticity problem. Phys. Med. Biol. 57:R35–R73, 2012.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  22. Doyley, M. M., F. Mastik, C. L. de Korte, S. G. Carlier, E. I. Cespedes, P. W. Serruys, N. Bom, and A. F. van der Steen. Advancing intravascular ultrasonic palpation toward clinical applications. Ultrasound Med. Biol. 27:1471–1480, 2001.

    Article  CAS  PubMed  Google Scholar 

  23. Fayad, Z. A., V. Fuster, K. Nikolaou, and C. Becker. Computed tomography and magnetic resonance imaging for noninvasive coronary angiography and plaque imaging: current and potential future concepts. Circulation 106:2026–2034, 2002.

    Article  PubMed  Google Scholar 

  24. Finet, G., J. Ohayon, and G. Rioufol. Biomechanical interaction between cap thickness, lipid core composition and blood pressure in vulnerable coronary plaque: impact on stability or instability. Coron. Artery Dis. 15:13–20, 2004.

    Article  PubMed  Google Scholar 

  25. Fleg, J. L., G. W. Stone, Z. A. Fayad, J. F. Granada, T. S. Hatsukami, F. D. Kolodgie, J. Ohayon, R. Pettigrew, M. S. Sabatine, G. J. Tearney, S. Waxman, M. J. Domanski, P. R. Srinivas, and J. Narula. Detection of high-risk atherosclerotic plaque: report of the NHLBI Working Group on current status and future directions. JACC Cardiovasc. Imaging 5:941–955, 2012.

    Article  PubMed Central  PubMed  Google Scholar 

  26. Fujii, K., Y. Kobayashi, G. S. Mintz, H. Takebayashi, G. Dangas, I. Moussa, R. Mehran, A. J. Lansky, E. Kreps, M. Collins, A. Colombo, G. W. Stone, M. B. Leon, and J. W. Moses. Intravascular ultrasound assessment of ulcerated ruptured plaques: a comparison of culprit and nonculprit lesions of patients with acute coronary syndromes and lesions in patients without acute coronary syndromes. Circulation 108:2473–2478, 2003.

    Article  PubMed  Google Scholar 

  27. Fuster, V., and P. R. Moreno. Atherothrombosis as a systemic, often silent, disease. Nat. Clin. Pract. Cardiovasc. Med. 2(9):431, 2005.

    Article  PubMed  Google Scholar 

  28. Fuster, V., P. R. Moreno, Z. A. Fayad, R. Corti, and J. J. Badimon. Atherothrombosis and high-risk plaque: part I: evolving concepts. J. Am. Coll. Cardiol. 46:937–954, 2005.

    Article  PubMed  Google Scholar 

  29. Gertz, S. D., and W. C. Roberts. Hemodynamic shear force in rupture of coronary arterial atherosclerotic plaques. Am. J. Cardiol. 66:1368–1372, 1990.

    Article  CAS  PubMed  Google Scholar 

  30. Gijsen, F. J., J. J. Wentzel, A. Thury, F. Mastik, J. A. Schaar, J. C. Schuurbiers, C. J. Slager, W. J. van der Giessen, P. J. de Feyter, A. F. van der Steen, and P. W. Serruys. Strain distribution over plaques in human coronary arteries relates to shear stress. Am. J. Physiol. Heart Circ. Physiol. 295:H1608–H1614, 2008.

    Article  CAS  PubMed  Google Scholar 

  31. Glagov, S., E. Weisenberg, C. K. Zarins, R. Stankunavicius, and G. J. Kolettis. Compensatory enlargement of human atherosclerotic coronary arteries. N. Engl. J. Med. 316:1371–1375, 1987.

    Article  CAS  PubMed  Google Scholar 

  32. He, X., and D. N. Ku. Pulsatile flow in the human left coronary artery bifurcation: average conditions. J. Biomech. Eng. 118:74–82, 1996.

    Article  CAS  PubMed  Google Scholar 

  33. Holzapfel, G. A., G. Sommer, C. T. Gasser, and P. Regitnig. Determination of layer-specific mechanical properties of human coronary arteries with nonatherosclerotic intimal thickening and related constitutive modeling. Am. J. Physiol. Heart Circ. Physiol. 289:H2048–H2058, 2005.

    Article  CAS  PubMed  Google Scholar 

  34. Hong, M. K., G. S. Mintz, C. W. Lee, B. K. Lee, T. H. Yang, Y. H. Kim, J. M. Song, K. H. Han, D. H. Kang, S. S. Cheong, J. K. Song, J. J. Kim, S. W. Park, and S. J. Park. The site of plaque rupture in native coronary arteries: a three-vessel intravascular ultrasound analysis. J. Am. Coll. Cardiol. 46:261–265, 2005.

    Article  PubMed  Google Scholar 

  35. Huo, Y., J. S. Choy, M. Svendsen, A. K. Sinha, and G. S. Kassab. Effects of vessel compliance on flow pattern in porcine epicardial right coronary arterial tree. J. Biomech. 42:594–602, 2009.

    Article  PubMed Central  PubMed  Google Scholar 

  36. Imoto, K., T. Hiro, T. Fujii, A. Murashige, Y. Fukumoto, G. Hashimoto, T. Okamura, J. Yamada, K. Mori, and M. Matsuzaki. Longitudinal structural determinants of atherosclerotic plaque vulnerability: a computational analysis of stress distribution using vessel models and three-dimensional intravascular ultrasound imaging. J. Am. Coll. Cardiol. 46:1507–1515, 2005.

    Article  PubMed  Google Scholar 

  37. Jang, I. K., B. E. Bouma, D. H. Kang, S. J. Park, S. W. Park, K. B. Seung, K. B. Choi, M. Shishkov, K. Schlendorf, E. Pomerantsev, S. L. Houser, H. T. Aretz, and G. J. Tearney. Visualization of coronary atherosclerotic plaques in patients using optical coherence tomography: comparison with intravascular ultrasound. J. Am. Coll. Cardiol. 39:604–609, 2002.

    Article  PubMed  Google Scholar 

  38. Kanai, H., H. Hasegawa, M. Ichiki, F. Tezuka, and Y. Koiwa. Elasticity imaging of atheroma with transcutaneous ultrasound: preliminary study. Circulation 107:3018–3021, 2003.

    Article  PubMed  Google Scholar 

  39. Kelly-Arnold, A., N. Maldonado, D. Laudier, E. Aikawa, L. Cardoso, and S. Weinbaum. Revised microcalcification hypothesis for fibrous cap rupture in human coronary arteries. Proc. Natl Acad. Sci. U.S.A. 110:10741–10746, 2013.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  40. Khalil, A. S., B. E. Bouma, and M. R. Kaazempur Mofrad. A combined FEM/genetic algorithm for vascular soft tissue elasticity estimation. Cardiovasc. Eng. 6:93–102, 2006.

    Article  PubMed  Google Scholar 

  41. Koenig, W. Inflammation and coronary heart disease: an overview. Cardiol. Rev. 9:31–35, 2001.

    Article  CAS  PubMed  Google Scholar 

  42. Kolodgie, F. D., A. P. Burke, A. Farb, H. K. Gold, J. Yuan, J. Narula, A. V. Finn, and R. Virmani. The thin-cap fibroatheroma: a type of vulnerable plaque: the major precursor lesion to acute coronary syndromes. Curr. Opin. Cardiol. 16:285–292, 2001.

    Article  CAS  PubMed  Google Scholar 

  43. Ku, D. N., D. P. Giddens, C. K. Zarins, and S. Glagov. Pulsatile flow and atherosclerosis in the human carotid bifurcation. Positive correlation between plaque location and low oscillating shear stress. Arteriosclerosis 5:293–302, 1985.

    Article  CAS  PubMed  Google Scholar 

  44. Kubo, T., T. Imanishi, S. Takarada, A. Kuroi, S. Ueno, T. Yamano, T. Tanimoto, Y. Matsuo, T. Masho, H. Kitabata, K. Tsuda, Y. Tomobuchi, and T. Akasaka. Assessment of culprit lesion morphology in acute myocardial infarction: ability of optical coherence tomography compared with intravascular ultrasound and coronary angioscopy. J. Am. Coll. Cardiol. 50:933–939, 2007.

    Article  PubMed  Google Scholar 

  45. Le Floc’h, S., G. Cloutier, Y. Saijo, G. Finet, S. K. Yazdani, F. Deleaval, G. Rioufol, R. I. Pettigrew, and J. Ohayon. A four-criterion selection procedure for atherosclerotic plaque elasticity reconstruction based on in vivo coronary intravascular ultrasound radial strain sequences. Ultrasound Med. Biol. 38:2084–2097, 2012.

    Article  PubMed  Google Scholar 

  46. Le Floc’h, S., G. Cloutier, G. Finet, P. Tracqui, R. I. Pettigrew, and J. Ohayon. On the potential of a new IVUS elasticity modulus imaging approach for detecting vulnerable atherosclerotic coronary plaques: in vitro vessel phantom study. Phys. Med. Biol. 55:5701–5721, 2010.

    Article  PubMed  Google Scholar 

  47. Le Floc’h, S., J. Ohayon, P. Tracqui, G. Finet, A. M. Gharib, R. L. Maurice, G. Cloutier, and R. I. Pettigrew. Vulnerable atherosclerotic plaque elasticity reconstruction based on a segmentation-driven optimization procedure using strain measurements: theoretical framework. IEEE Trans. Med. Imaging 28:1126–1137, 2009.

    Article  PubMed  Google Scholar 

  48. Lehoux, S. Redox signalling in vascular responses to shear and stretch. Cardiovasc. Res. 71:269–279, 2006.

    Article  CAS  PubMed  Google Scholar 

  49. Lehoux, S., Y. Castier, and A. Tedgui. Molecular mechanisms of the vascular responses to haemodynamic forces. J. Intern. Med. 259:381–392, 2006.

    Article  CAS  PubMed  Google Scholar 

  50. Lehoux, S., B. Esposito, R. Merval, L. Loufrani, and A. Tedgui. Pulsatile stretch-induced extracellular signal-regulated kinase 1/2 activation in organ culture of rabbit aorta involves reactive oxygen species. Arterioscler. Thromb. Vasc. Biol. 20:2366–2372, 2000.

    Article  CAS  PubMed  Google Scholar 

  51. Lehoux, S., and A. Tedgui. Signal transduction of mechanical stresses in the vascular wall. Hypertension 32:338–345, 1998.

    Article  CAS  PubMed  Google Scholar 

  52. Libby, P., P. M. Ridker, and A. Maseri. Inflamm. Atheroscler. Circ. 105:1135–1143, 2002.

    CAS  Google Scholar 

  53. Libby, P., and P. Theroux. Pathophysiology of coronary artery disease. Circulation 111:3481–3488, 2005.

    Article  PubMed  Google Scholar 

  54. Loree, H. M., R. D. Kamm, R. G. Stringfellow, and R. T. Lee. Effects of fibrous cap thickness on peak circumferential stress in model atherosclerotic vessels. Circ. Res. 71:850–858, 1992.

    Article  CAS  PubMed  Google Scholar 

  55. Maldonado, N., A. Kelly-Arnold, L. Cardoso, and S. Weinbaum. The explosive growth of small voids in vulnerable cap rupture; cavitation and interfacial debonding. J. Biomech. 46:396–401, 2013.

    Article  PubMed  Google Scholar 

  56. Maurice, R. L., J. Fromageau, E. Brusseau, G. Finet, G. Rioufol, and G. Cloutier. On the potential of the lagrangian estimator for endovascular ultrasound elastography: in vivo human coronary artery study. Ultrasound Med. Biol. 33:1199–1205, 2007.

    Article  PubMed  Google Scholar 

  57. Maurice, R. L., J. Ohayon, G. Finet, and G. Cloutier. Adapting the Lagrangian speckle model estimator for endovascular elastography: theory and validation with simulated radio-frequency data. J. Acoust. Soc. Am. 116:1276–1286, 2004.

    Article  PubMed  Google Scholar 

  58. Moore, J. E., D. N. Ku, C. K. Zarins, and S. Glagov. Pulsatile flow visualization in the abdominal aorta under differing physiologic conditions: implications for increased susceptibility to atherosclerosis. J. Biomech. Eng. 114:391–397, 1992.

    Article  PubMed  Google Scholar 

  59. Naghavi, M., P. Libby, E. Falk, S. W. Casscells, S. Litovsky, J. Rumberger, J. J. Badimon, C. Stefanadis, P. Moreno, G. Pasterkamp, Z. Fayad, P. H. Stone, S. Waxman, P. Raggi, M. Madjid, A. Zarrabi, A. Burke, C. Yuan, P. J. Fitzgerald, D. S. Siscovick, C. L. de Korte, M. Aikawa, K. E. Airaksinen, G. Assmann, C. R. Becker, J. H. Chesebro, A. Farb, Z. S. Galis, C. Jackson, I. K. Jang, W. Koenig, R. A. Lodder, K. March, J. Demirovic, M. Navab, S. G. Priori, M. D. Rekhter, R. Bahr, S. M. Grundy, R. Mehran, A. Colombo, E. Boerwinkle, C. Ballantyne, W. Insull, Jr., R. S. Schwartz, R. Vogel, P. W. Serruys, G. K. Hansson, D. P. Faxon, S. Kaul, H. Drexler, P. Greenland, J. E. Muller, R. Virmani, P. M. Ridker, D. P. Zipes, P. K. Shah, and J. T. Willerson. From vulnerable plaque to vulnerable patient: a call for new definitions and risk assessment strategies: Part II. Circulation 108:1772–1778, 2003.

    Article  PubMed  Google Scholar 

  60. Ohayon, J., G. Finet, A. M. Gharib, D. A. Herzka, P. Tracqui, J. Heroux, G. Rioufol, M. S. Kotys, A. Elagha, and R. I. Pettigrew. Necrotic core thickness and positive arterial remodeling index: emergent biomechanical factors for evaluating the risk of plaque rupture. Am. J. Physiol. Heart Circ. Physiol. 295:H717–H727, 2008.

    Article  CAS  PubMed  Google Scholar 

  61. Ohayon, J., G. Finet, F. Treyve, G. Rioufol, and O. Dubreuil. A three-dimentional finite element analysis of stress distribution in a coronary atherosclerotic plaque: in vivo prediction of plaque rupture location, Kerala, India. Research Singpost, 2005, pp. 225–241.

  62. Ohayon, J., A. M. Gharib, A. Garcia, J. Heroux, S. K. Yazdani, M. Malve, P. Tracqui, M. A. Martinez, M. Doblare, G. Finet, and R. I. Pettigrew. Is arterial wall-strain stiffening an additional process responsible for atherosclerosis in coronary bifurcations?: an in vivo study based on dynamic CT and MRI. Am. J. Physiol. Heart Circ. Physiol. 301:H1097–H1106, 2011.

    Article  CAS  PubMed  Google Scholar 

  63. Ohayon, J., P. Teppaz, G. Finet, and G. Rioufol. In-vivo prediction of human coronary plaque rupture location using intravascular ultrasound and the finite element method. Coron. Artery Dis. 12:655–663, 2001.

    Article  CAS  PubMed  Google Scholar 

  64. Ophir, J., I. Cespedes, H. Ponnekanti, Y. Yazdi, and X. Li. Elastography: a quantitative method for imaging the elasticity of biological tissues. Ultrason. Imaging 13:111–134, 1991.

    CAS  PubMed  Google Scholar 

  65. Papafaklis, M. I., K. C. Koskinas, Y. S. Chatzizisis, P. H. Stone, and C. L. Feldman. In-vivo assessment of the natural history of coronary atherosclerosis: vascular remodeling and endothelial shear stress determine the complexity of atherosclerotic disease progression. Curr. Opin. Cardiol. 25:627–638, 2010.

    Article  PubMed  Google Scholar 

  66. Perktold, K., M. Hofer, G. Rappitsch, M. Loew, B. D. Kuban, and M. H. Friedman. Validated computation of physiologic flow in a realistic coronary artery branch. J. Biomech. 31:217–228, 1998.

    Article  CAS  PubMed  Google Scholar 

  67. Rabbani, R., and E. J. Topol. Strategies to achieve coronary arterial plaque stabilization. Cardiovasc. Res. 41:402–417, 1999.

    Article  CAS  PubMed  Google Scholar 

  68. Rioufol, G., G. Finet, I. Ginon, X. Andre-Fouet, R. Rossi, E. Vialle, E. Desjoyaux, G. Convert, J. F. Huret, and A. Tabib. Multiple atherosclerotic plaque rupture in acute coronary syndrome: a three-vessel intravascular ultrasound study. Circulation 106:804–808, 2002.

    Article  CAS  PubMed  Google Scholar 

  69. Rogowska, J., N. A. Patel, J. G. Fujimoto, and M. E. Brezinski. Optical coherence tomographic elastography technique for measuring deformation and strain of atherosclerotic tissues. Heart 90:556–562, 2004.

    Article  CAS  PubMed  Google Scholar 

  70. Shah, P. K. Plaque size, vessel size and plaque vulnerability: bigger may not be better. J. Am. Coll. Cardiol. 32:663–664, 1998.

    Article  CAS  PubMed  Google Scholar 

  71. Tang, D., C. Yang, S. Kobayashi, and D. N. Ku. Effect of a lipid pool on stress/strain distributions in stenotic arteries: 3-D fluid-structure interactions (FSI) models. J. Biomech. Eng. 126:363–370, 2004.

    Article  PubMed  Google Scholar 

  72. Tecelao, S. R., J. J. Zwanenburg, J. P. Kuijer, and J. T. Marcus. Extended harmonic phase tracking of myocardial motion: improved coverage of myocardium and its effect on strain results. J. Magn. Reson. Imaging 23:682–690, 2006.

    Article  PubMed  Google Scholar 

  73. Tedgui, A., and Z. Mallat. Cytokines in atherosclerosis: pathogenic and regulatory pathways. Physiol. Rev. 86:515–581, 2006.

    Article  CAS  PubMed  Google Scholar 

  74. van Soest, G., F. Mastik, N. de Jong, and A. F. van der Steen. Robust intravascular optical coherence elastography by line correlations. Phys. Med. Biol. 52:2445–2458, 2007.

    Article  PubMed  Google Scholar 

  75. Varnava, A. M., P. G. Mills, and M. J. Davies. Relationship between coronary artery remodeling and plaque vulnerability. Circulation 105:939–943, 2002.

    Article  PubMed  Google Scholar 

  76. Vengrenyuk, Y., S. Carlier, S. Xanthos, L. Cardoso, P. Ganatos, R. Virmani, S. Einav, L. Gilchrist, and S. Weinbaum. A hypothesis for vulnerable plaque rupture due to stress-induced debonding around cellular microcalcifications in thin fibrous caps. Proc. Natl Acad. Sci. U.S.A. 103:14678–14683, 2006.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  77. Virmani, R., A. P. Burke, A. Farb, and F. D. Kolodgie. Pathology of the vulnerable plaque. J. Am. Coll. Cardiol. 47:C13–C18, 2006.

    Article  CAS  PubMed  Google Scholar 

  78. Virmani, R., F. D. Kolodgie, A. P. Burke, A. Farb, and S. M. Schwartz. Lessons from sudden coronary death: a comprehensive morphological classification scheme for atherosclerotic lesions. Arterioscler. Thromb. Vasc. Biol. 20:1262–1275, 2000.

    Article  CAS  PubMed  Google Scholar 

  79. Wan, M., Y. Li, J. Li, Y. Cui, and X. Zhou. Strain imaging and elasticity reconstruction of arteries based on intravascular ultrasound video images. IEEE Trans. Biomed. Eng. 48:116–120, 2001.

    Article  CAS  PubMed  Google Scholar 

  80. Wang, J. C., S. L. Normand, L. Mauri, and R. E. Kuntz. Coronary artery spatial distribution of acute myocardial infarction occlusions. Circulation 110:278–284, 2004.

    Article  PubMed  Google Scholar 

  81. Weydahl, E. S., and J. E. Moore. Dynamic curvature strongly affects wall shear rates in a coronary artery bifurcation model. J. Biomech. 34:1189–1196, 2001.

    Article  CAS  PubMed  Google Scholar 

  82. Williamson, S. D., Y. Lam, H. F. Younis, H. Huang, S. Patel, M. R. Kaazempur-Mofrad, and R. D. Kamm. On the sensitivity of wall stresses in diseased arteries to variable material properties. J. Biomech. Eng. 125:147–155, 2003.

    Article  CAS  PubMed  Google Scholar 

  83. Zeng, D., Z. Ding, M. H. Friedman, and C. R. Ethier. Effects of cardiac motion on right coronary artery hemodynamics. Ann. Biomed. Eng. 31:420–429, 2003.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Shadi Mamaghani, Ph.D. for her expert assistance in the review and editing of the manuscript. This research was supported in part by an appointment (J. Ohayon) to the Senior Fellow Program at the National Institutes of Health (NIH) 2006–2007. This program was administered by Oak Ridge Institute for Science and Education through an interagency agreement between the NIH and the U.S. Department of Energy. J. Ohayon, G. Cloutier and G. Finet were supported by grants from the Région Rhône-Alpes (2010–2013), the Agence Nationale de la Recherche (ANR), France (ATHEBIOMECH project # 06-BLANC-0263), and by the collaborative health research joint program of the Natural Sciences and Engineering Research Council of Canada (NSERC #323405-06) and Canadian Institutes of Health Research (CIHR #CPG-80085). This research is now supported by a joint international program of the ANR (MELANII project # 09-BLANC-0423) and NSERC strategic grant #STPGP-381136-09.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roderic I. Pettigrew.

Additional information

Associate Editor Gang Bao oversaw the review of this article.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ohayon, J., Finet, G., Le Floc’h, S. et al. Biomechanics of Atherosclerotic Coronary Plaque: Site, Stability and In Vivo Elasticity Modeling. Ann Biomed Eng 42, 269–279 (2014). https://doi.org/10.1007/s10439-013-0888-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-013-0888-1

Keywords

Navigation