Skip to main content

Advertisement

Log in

The relationships between the pulsatile flow form of ocular microcirculation by laser speckle flowgraphy and the left ventricular end-diastolic pressure and mass

  • Original Paper
  • Published:
The International Journal of Cardiovascular Imaging Aims and scope Submit manuscript

Abstract

To evaluate the relationships between parameters of the pulsatile flow form in the optic nerve head shown by laser speckle flowgraphy (LSFG) and the left ventricular (LV) end-diastolic pressure and mass obtained by echocardiography. We cross sectional analyzed the cases of 175 subjects who had undergone polysomnography. Standard M-mode two-dimensional color Doppler imaging was performed to evaluate the E/e′ ratio (which represents the LV end-diastolic pressure) and LV mass. The pulsatile flow form analysis parameters of the blowout score and acceleration time index were evaluated. The parameters were analyzed separately for the tissue, vessels and throughout the optic nerve head (All). We performed a single regression analysis and a multiple regression analysis to determine whether pulsatile flow form are independent factors for the E/e′ ratio and LV mass. The factors contributing independently to the E/e′ ratio were blowout time-Tissue (standard regression = − 0.27, t-value = − 2.90, p < 0.0001) and body mass index (BMI) (0.16, 2.05, p = 0.04). The factors that were shown to independently contribute to the LV mass were urinary albumin concentration (0.30, − 2.90, p < 0.0001), BMI (0.28, 4.09, p < 0.0001), differences of gender (men = 1, women = 0: 0.23, 3.28, p = 0.001), acceleration time index-Vessel (− 0.23, − 2.99, p = 0.003) and mean arterial blood pressure (0.17, 2.61, p = 0.01). Our results confirmed that parameters of the pulsatile flow form of ocular microcirculation obtained by LSFG are significantly correlated with the LV end-diastolic pressure ratio and LV mass.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Flammer J, Konieczka K, Bruno RM, Virdis A, Flammer AJ, Taddei S (2013) The eye and the heart. Eur Heart J 34:1270–1278

    Article  Google Scholar 

  2. Tamaki Y, Araie M, Kawamoto E, Eguchi S, Fujii H (1995) Non-contact, two-dimensional measurement of tissue circulation in choroid and optic nerve head using laser speckle phenomenon. Exp Eye Res 60:373–383

    Article  CAS  Google Scholar 

  3. Isono H, Kishi S, Kimura Y, Hagiwara N, Konishi N, Fujii H (2003) Observation of choroidal circulation using index of erythrocytic velocity. Arch Ophthalmol 121:225–231

    Article  Google Scholar 

  4. Fujii H (1994) Visualisation of retinal blood flow by laser speckle flow-graphy. Med Biol Eng Comput 32:302–304

    Article  CAS  Google Scholar 

  5. Fujii H (2000) Laser speckle flowgraphy. In: Medical Diagnostic Techniques and Procedures. Narosa Publishing House, New Delhi, pp 216–224

    Google Scholar 

  6. Takahashi H, Sugiyama T, Tokushige H, Maeno T, Nakazawa T, Ikeda T, Araie M (2013) Comparison of CCD-equipped laser speckle flowgraphy with hydrogen gas clearance method in the measurement of optic nerve head microcirculation in rabbits. Exp Eye Res 108:10–15

    Article  CAS  Google Scholar 

  7. Sugiyama T (2014) Basic technology and clinical applications of the updated model of laser speckle flowgraphy to ocular diseases. Photonics 1:220–234

    Article  Google Scholar 

  8. Shiba T, Takahashi M, Hori Y, Maeno T (2012) Pulse-wave analysis of optic nerve head circulation is significantly correlated with brachial–ankle pulse-wave velocity, carotid intima-media thickness, and age. Graefes Arch Clin Exp Ophthalmol 250:1275–1281

    Article  Google Scholar 

  9. Shiba T, Takahashi M, Hori Y, Maeno T, Shirai K (2012) Optic nerve head circulation determined by pulse wave analysis is significantly correlated with cardio-ankle vascular index, left ventricular diastolic function, and age. J Atheroscler Thromb 19:999–1005

    Article  Google Scholar 

  10. Badeer AJ (1964) Biological significance of cardiac hypertrophy. Am J Cardiol 14:133–138

    Article  CAS  Google Scholar 

  11. Linzbach A (1976) Hypertrophy, hyperplasia and structural dilatation of the human heart. Adv Cardiol 18:1–13

    Article  CAS  Google Scholar 

  12. Mishra RK, Tietjens J, Regan M, Whooley MA, Schiller NB (2015) The Prognostic Utility of Echo-Estimated Left Ventricular End-Diastolic Pressure-Volume Relationship in Stable Coronary Artery Disease: The Heart and Soul Study. Echocardiography 32:1639–1646

    Article  Google Scholar 

  13. Lee SH, Choi S, Chung WJ, Byun YS, Ryu SK, Pyun WB, Rim SJ (2008) Tissue Doppler index, E/e′, and ischemic stroke in patients with atrial fibrillation and preserved left ventricular ejection fraction. J Neurol Sci 271:148–152

    Article  Google Scholar 

  14. Nagueh SF, Appleton CP, Gillebert TC, Marino PN, Oh JK, Smiseth OA, Waggoner AD, Flachskampf FA, Pellikka PA, Evangelisa A (2009) Recommendations for the evaluation of left ventricular diastolic function by echocardiography. Eur J Echocardiogr 10:165–193

    Article  Google Scholar 

  15. Devereux RB, Alonso DR, Lutas EM, Gottlieb GJ, Campo E, Sachs I, Reichek N (1986) Echocardiographic assessment of left ventricular hypertrophy: comparison to necropsy findings. Am J Cardiol 57:450–458

    Article  CAS  Google Scholar 

  16. Lang RM, Bierig M, Devereux RB, Flachskampf FA, Foster E, Pellikka PA, Picard MH, Roman MJ, Seward J, Shanewise JS, Solomon SD, Spencer KT, Sutton MS, Stewart WJ; Chamber Quantification Writing Group (2005) American Society of Echocardiography’s Guidelines and Standards Committee; European Association of Echocardiography. Recommendations for chamber quantification: a report from the American Society of Echocardiography’s Guidelines and Standards Committee and the Chamber Quantification Writing Group, developed in conjunction with the European Association of Echocardiography, a branch of the European Society of Cardiology. J Am Soc Echocardiogr 18:1440–1463

    Article  Google Scholar 

  17. Sugiyama T, Araie M, Riva CE, Schmetterer L, Orgul S (2010) Use of laser speckle flowgraphy in ocular blood flow research. Acta Ophthalmol 88:723–729

    Article  Google Scholar 

  18. Shiga Y, Omodaka K, Kunikata H, Ryu M, Yokoyama Y, Tsuda S, Asano T, Maekawa S, Maruyama K, Nakazawa T (2013) Waveform analysis of ocular blood flow and the early detection of normal tension glaucoma. Invest Ophthalmol Vis Sci 54:7699–7706

    Article  Google Scholar 

  19. Imai E, Horio M, Nitta K, Yamagata K, Iseki K, Hara S, Ura N, Kiyohara Y, Hirakata H, Watanabe T, Moriyama T, Ando Y, Inaguma D, Narita I, Iso H, Wakai K, Yasuda Y, Tsukamoto Y, Ito S, Makino H, Hishida A, Matsuo S (2007) Estimation of glomerular filtration rate by the MDRD study equation modified for Japanese patients with chronic kidney disease. Clin Exp Nephrol 11:41–50

    Article  Google Scholar 

  20. Matthews DR, Hosker JP, Rudenski AS, Naylor BA, Treacher DF, Turner RC (1985) Homeostasis model assessment: insulin resistance and beta-cell function from fasting plasma glucose and insulin concentrations in man. Diabetologia 28:412–419

    Article  CAS  Google Scholar 

  21. Aizawa N, Yokoyama Y, Chiba N, Omodaka K, Yasuda M, Otomo T, Nakamura M, Fuse N, Nakazawa T (2011) Reproducibility of retinal circulation measurements obtained using laser speckle flowgraphy-NAVI in patients with glaucoma. Clin Ophthalmol 5:1171–1176

    PubMed  PubMed Central  Google Scholar 

  22. Luft N, Wozniak PA, Aschinger GC, Fondi K, Bata AM, Werkmeister RM, Schmidl D, Witkowska KJ, Bolz M, Garhöfer G, Schmetterer L (2016) Ocular blood flow measurements in healthy white subjects using laser speckle flowgraphy. PLoS One 11:e0168190

    Article  Google Scholar 

  23. Shiba T, Takahashi M, Maeno T (2014) Pulse-wave analysis of optic nerve head circulation is significantly correlated with kidney function in patients with and without chronic kidney disease. J Ophthalmol 2014: 291687

  24. Rina M, Shiba T, Takahashi M, Hori Y, Maeno T (2015) Pulse waveform analysis of optic nerve head circulation for predicting carotid atherosclerotic changes. Graefes Arch Clin Exp Ophthalmol 253:2285–2291

    Article  CAS  Google Scholar 

  25. Shiba T, Takahashi M, Hashimoto R, Matsumoto T, Hori Y (2016) Pulse waveform analysis in the optic nerve head circulation reflects systemic vascular resistance obtained via a Swan-Ganz catheter. Graefes Arch Clin Exp Ophthalmol 254:1195–1200

    Article  Google Scholar 

  26. Schmidl D, Boltz A, Kaya S, Lasta M, Pemp B, Fuchsjager-Mayrl G, Hommer A, Garhofer G, Schmetterer L (2013) Role of nitric oxide in optic nerve head blood flow regulation during isometric exercise in healthy humans. Invest Ophthalmol Vis Sci 54:1964–1970

    Article  CAS  Google Scholar 

  27. Caprioli J, Coleman AL (2010) Blood pressure, perfusion pressure, and glaucoma. Am J Ophthalmol 149:704–712

    Article  Google Scholar 

  28. Schwarzl M, Ojeda F, Zeller T, Seiffert M, Becher PM, Munzel T, Wild PS, Blettner M, Lackner KJ, Pfeiffer N, Beutel ME, Blankenberg S, Westermann D (2016) Risk factors for heart failure are associated with alterations of the LV end-diastolic pressure-volume relationship in non-heart failure individuals: Data from a large-scale, population-based cohort. Eur Heart J 37:1807–1814

    Article  Google Scholar 

  29. Eleid MF, Nishimura RA, Lennon RJ, Sorajja P (2013) Left ventricular diastolic dysfunction in patients with mitral stenosis undergoing percutaneous mitral balloon valvotomy. Mayo Clin Proc 88:337–344

    Article  Google Scholar 

  30. Mochizuki Y, Tanaka H, Matsumoto K, Sano H, Shimoura H, Ooka J, Sawa T, Motoji Y, Ryo-Koriyama K, Hirota Y, Ogawa W, Hirata KI (2017) Impact of left ventricular longitudinal functional mechanics on the progression of diastolic function in diabetes mellitus. Int J Cardiovasc Imag 33:1905–1914

    Article  Google Scholar 

  31. de Beus E, Meijs MF, Bots ML, Visseren FL, Blankestijn PJ; SMART Study Group (2015) Presence of albuminuria predicts left ventricular mass in patients with chronic systemic arterial hypertension. Eur J Clin Invest 45:550–556

    Article  Google Scholar 

  32. Kramer H, Jacobs DR Jr, Bild D, Post W, Saad MF, Detrano R, Tracy R, Cooper R, Liu K (2005) Urine albumin excretion and subclinical cardiovascular disease. The multi-ethnic study of atherosclerosis. Hypertension 46:38–43

    Article  CAS  Google Scholar 

  33. Reffelmann T, Dorr M, Volzke H, Friedrich N, Krebs A, Ittermann T, Felix SB (2010) Urinary albumin excretion, even within the normal range, predicts an increase in left ventricular mass over the following 5 years. Kidney Int 77:1115–1122

    Article  CAS  Google Scholar 

  34. Seta H, Ishimitsu T, Tamano K, Takahashi M, Ohrui M (2001) Analysis of factors influencing left ventricular mass and diastolic function in normotensive men. J Cardiol 37:249–256

    CAS  PubMed  Google Scholar 

  35. Lauer MS, Anderson KM, Kannel WB, Levy D (1991) The impact of obesity on left ventricular mass and geometry. The Framingham Heart Study. JAMA 266:231–236

    Article  CAS  Google Scholar 

  36. Park SH, Shub C, Nobrega TP, Bailey KR, Seward JB (1996) Two-dimensional echocardiographic calculation of left ventricular mass as recommended by the American Society of Echocardiography: correlation with autopsy and M-mode echocardiography. J Am Soc Echocardiogr 9:119–128

    Article  CAS  Google Scholar 

  37. Bella JN, Palmieri V, Kitzman DW, Liu JE, Oberman A, Hunt SC, Hopkins PN, Rao DC, Arnett DK, Devereux RB (2002) Gender difference in diastolic function in hypertension (the HyperGEN study). Am J Cardiol 89:1052–1056

    Article  Google Scholar 

  38. Wong TY, Larsen EK, Klein R, Mitchell P, Couper DJ, Klein BE, Hubbard LD, Siscovick DS, Sharrett AR (2005) Cardiovascular risk factors for retinal vein occlusion and arteriolar emboli: the atherosclerosis risk in communities & cardiovascular health studies. Ophthalmology 112:540–547

    Article  Google Scholar 

  39. Klein R, Cruickshanks KJ, Myers CE, Sivakumaran TA, Iyengar SK, Meuer SM, Schubert CR, Gangnon RE, Klein BE (2013) The relationship of atherosclerosis to the 10-year cumulative incidence of age-related macular degeneration: the Beaver Dam studies. Ophthalmology 120:1012–1019

    Article  Google Scholar 

Download references

Funding

This study had no sponsorship or other support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tomoaki Shiba.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

The Institutional Review Board of Toho University Sakura Medical Center approved the study (No 2011-009 and 2010-012).

Informed consent

We started research after obtaining informed consent from all participants in accord with the Declaration of Helsinki.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shiba, T., Takahashi, M., Shiba, C. et al. The relationships between the pulsatile flow form of ocular microcirculation by laser speckle flowgraphy and the left ventricular end-diastolic pressure and mass. Int J Cardiovasc Imaging 34, 1715–1723 (2018). https://doi.org/10.1007/s10554-018-1388-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10554-018-1388-z

Keywords

Navigation