Skip to main content
Log in

Myocardial perfusion reserve and global longitudinal strain as potential markers of coronary allograft vasculopathy in late-stage orthotopic heart transplantation

  • Original Paper
  • Published:
The International Journal of Cardiovascular Imaging Aims and scope Submit manuscript

Abstract

Coronary allograft vasculopathy (CAV) is a major cause of mortality in late-stage orthotopic heart transplantation (OHT) patients. Recent evidence has shown that myocardial perfusion reserve (MPR) derived from vasodilator cardiovascular magnetic resonance imaging (vCMR) and global longitudinal strain (GLS) from transthoracic echocardiography (TTE) are useful to detect CAV. However, previous studies have not comprehensively addressed whether these parameters are confounded by allograft rejection, myocardial scar/fibrosis, or allograft dysfunction. Our aim was to determine whether changes in late post-OHT MPR and GLS are due to CAV or other confounding factors. Twenty OHT patients (time from transplant to vCMR was 8.1 ± 4.1 years) and 30 controls (10 healthy volunteers and 20 with prior myocardial infarction to provide perspective with regards to the severity of any abnormalities seen in post-OHT patients) underwent vasodilator vCMR from which MPR index (MPRi), left ventricular ejection fraction (LVEF), and burden of late gadolinium enhancement (LGE) were quantified. TTE was used to measure GLS. The presence of CAV was determined from invasive coronary angiograms using thrombolysis in myocardial infarction (TIMI) frame counts and grading severity per guidelines. Previous endomyocardial biopsies were reviewed to assess association with episodes of rejection. We examined the correlations between MPRi and GLS with markers of CAV, allograft function, scar/fibrosis, and rejection. MPRi was abnormal in post-OHT patients compared to both healthy volunteers and MI controls. While there was no relationship between MPRi or GLS and LVEF, episodes of rejection, or LGE burden, both MPRi and GLS were associated with TIMI frame counts and presence and severity of CAV. Additionally, MPRi correlated with GLS (R = 0.68, P = 0.0002). In conclusion, MPRi and GLS are abnormal in late-stage OHT and associated with CAV, but not related to allograft rejection, myocardial scar/fibrosis, or allograft dysfunction. Non-invasive monitoring of MPRi and GLS may be a useful strategy to detect CAV.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

vCMR:

Vasodilator cardiac magnetic resonance

MPRi:

Myocardial perfusion reserve index

OHT:

Orthotopic heart transplant

CAV:

Coronary allograft vasculopathy

LGE:

Late gadolinium enhancement

GLS:

Global longitudinal strain

References

  1. Furiasse N, Kobashigawa JA (2017) Immunosuppression and adult heart transplantation: emerging therapies and opportunities. Expert Rev Cardiovasc Ther 15:59–69

    Article  CAS  Google Scholar 

  2. Stehlik J, Edwards LB, Kucheryavaya AY, Benden C, Christie JD, Dobbels F, Kirk R, Rahmel AO, Hertz MI (2011) The registry of the International Society for Heart and Lung transplantation: Twenty-eighth adult heart transplant report-2011. J Heart Lung Transplant 30:1078–1094

    Article  Google Scholar 

  3. Baris N, Sipahi I, Kapadia SR, Nicholls SJ, Erinc K, Gulel O, Crowe TD, Hobbs R, Yamani MH, Taylor DO, Smedira N, Starling RC, Nissen SE, Tuzcu EM (2007) Coronary angiography for follow-up of heart transplant recipients: insights from TIMI frame count and TIMI myocardial perfusion grade. J Heart Lung Transplant 26:593–597

    Article  Google Scholar 

  4. Sun ZH, Rashmizal H, Xu L (2014) Molecular imaging of plaques in coronary arteries with PET and SPECT. J Geriatr Cardiol 11:259–273

    PubMed  PubMed Central  Google Scholar 

  5. Preumont N, Berkenboom G, Vachiery J, Jansens J, Antoine M, Wikler D, Damhaut P, Degré S, Lenaers A, Goldman S (2000) Early alterations of myocardial blood flow reserve in heart transplant recipients with angiographically normal coronary arteries. J Heart Lung Transplant 19:538–545

    Article  CAS  Google Scholar 

  6. Kushwaha SS, Narula J, Narula N, Zervos G, Semigran MJ, Fischman AJ, Alpert NA, Dec GW, Gewirtz H (1998) Pattern of changes over time in myocardial blood flow and microvascular dilator capacity in patients with normally functioning cardiac allografts. Am J Cardiol 82:1377–1381

    Article  CAS  Google Scholar 

  7. Zhao XM, Delbeke D, Sandler MP, Yeoh TK, Votaw JR, Frist WH (1995) Nitrogen-13-ammonia and PET to detect allograft coronary artery disease after heart transplantation: comparison with coronary angiography. J Nucl Med 36:982–987

    CAS  PubMed  Google Scholar 

  8. Senneff MJ, Hartman J, Sobel BE, Geltman EM, Bergmann SR (1993) Persistence of coronary vasodilator responsivity after cardiac transplantation. Am J Cardiol 71:333–338

    Article  CAS  Google Scholar 

  9. Rechavia E, Araujo LI, De Silva R, Kushwaha SS, Lammertsma AA, Jones T, Mitchell A, Maseri A, Yacoub MH (1992) Dipyridamole vasodilator response after human orthotopic heart transplantation: quantification by oxygen-15-labeled water and positron emission tomography. J Am Coll Cardiol 19:100–106

    Article  CAS  Google Scholar 

  10. Preumont N, Lenaers A, Goldman S, Vachiery JL, Wikler D, Damhaut P, Degré S, Berkenboom G (1996) Coronary vasomotility and myocardial blood flow early after heart transplantation. Am J Cardiol 78:550–554

    Article  CAS  Google Scholar 

  11. McGinn AL, Wilson RF, Olivari MT, Homans DC, White CW (1988) Coronary vasodilator reserve after human orthotopic cardiac transplantation. Circulation 78:1200–1209

    Article  CAS  Google Scholar 

  12. Krivokapich J, Stevenson LW, Kobashigawa J, Huang SC, Schelbert HR (1991) Quantification of absolute myocardial perfusion at rest and during exercise with positron emission tomography after human cardiac transplantation. J Am Coll Cardiol 18:512–517

    Article  CAS  Google Scholar 

  13. Miller CA, Sarma J, Naish JH, Yonan N, Williams SG, Shaw SM, Clark D, Pearce K, Stout M, Potluri R, Borg A, Coutts G, Chowdhary S, McCann GP, Parker GJ, Ray SG, Schmitt M (2014) Multiparametric cardiovascular magnetic resonance assessment of cardiac allograft vasculopathy. J Am Coll Cardiol 63:799–808

    Article  Google Scholar 

  14. Grupper A, Gewirtz H, Kushwaha S (2017) Reinnervation post-Heart transplantation. Eur Heart J

  15. Clemmensen TS, Løgstrup BB, Eiskjær H, Poulsen SH (2015) Evaluation of longitudinal myocardial deformation by 2-dimensional speckle-tracking echocardiography in heart transplant recipients: relation to coronary allograft vasculopathy. J Heart Lung Transplant 34:195–203

    Article  Google Scholar 

  16. Clemmensen TS, Eiskjær H, Løgstrup BB, Tolbod LP, Harms HJ, Bouchelouche K, Hoff C, Frøkiær J, Poulsen SH (2016) Noninvasive detection of cardiac allograft vasculopathy by stress exercise echocardiographic assessment of myocardial deformation. J Am Soc Echocardiogr 29:480–490

    Article  Google Scholar 

  17. Clemmensen TS, Løgstrup BB, Eiskjaer H, Poulsen SH (2016) Coronary flow reserve predicts longitudinal myocardial deformation capacity in heart-transplanted patients. Echocardiography 33:562–571

    Article  Google Scholar 

  18. Clemmensen TS, Løgstrup BB, Eiskjaer H, Høyer S, Poulsen SH (2015) The long-term influence of repetitive cellular cardiac rejections on left ventricular longitudinal myocardial deformation in heart transplant recipients. Transpl Int 28:475–484

    Article  Google Scholar 

  19. Wöhrle J, Nusser T, Merkle N, Kestler HA, Grebe OC, Marx N, Höher M, Kochs M, Hombach V (2006) Myocardial perfusion reserve in cardiovascular magnetic resonance: correlation to coronary microvascular dysfunction. J Cardiovasc Magn Reson 8:781–787

    Article  Google Scholar 

  20. Patel AR, Epstein FH, Kramer CM (2008) Evaluation of the microcirculation: advances in cardiac magnetic resonance perfusion imaging. J Nucl Cardiol 15:698–708

    Article  Google Scholar 

  21. Narang A, Mor-Avi V, Bhave NM, Tarroni G, Corsi C, Davidson MH, Lang RM, Patel AR (2016) Large high-density lipoprotein particle number is independently associated with microvascular function in patients with well-controlled low-density lipoprotein concentration: a vasodilator stress magnetic resonance perfusion study. J Clin Lipidol 10:314–322

    Article  Google Scholar 

  22. Lorenz CH, Walker ES, Morgan VL, Klein SS, Graham TP (1999) Normal human right and left ventricular mass, systolic function, and gender differences by cine magnetic resonance imaging. J Cardiovasc Magn Reson 1:7–21

    Article  CAS  Google Scholar 

  23. Murtagh G, Laffin LJ, Beshai JF, Maffessanti F, Bonham CA, Patel AV, Yu Z, Addetia K, Mor-Avi V, Moss JD, Hogarth DK, Sweiss NJ, Lang RM, Patel AR (2016) Prognosis of myocardial damage in sarcoidosis patients with preserved left ventricular ejection fraction: risk stratification using cardiovascular magnetic resonance. Circ Cardiovasc Imaging 9:e003738

    Article  Google Scholar 

  24. Jerosch-Herold M, Seethamraju RT, Swingen CM, Wilke NM, Stillman AE (2004) Analysis of myocardial perfusion MRI. J Magn Reson Imaging 19:758–770

    Article  Google Scholar 

  25. Czernin J, Müller P, Chan S, Brunken RC, Porenta G, Krivokapich J, Chen K, Chan A, Phelps ME, Schelbert HR (1993) Influence of age and hemodynamics on myocardial blood flow and flow reserve. Circulation 88:62–69

    Article  CAS  Google Scholar 

  26. Lang RM, Badano LP, Mor-Avi V, Afilalo J, Armstrong A, Ernande L, Flachskampf FA, Foster E, Goldstein SA, Kuznetsova T, Lancellotti P, Muraru D, Picard MH, Rietzschel ER, Rudski L, Spencer KT, Tsang W, Voigt JU (2015) Recommendations for cardiac chamber quantification by echocardiography in adults: an update from the American Society of Echocardiography and the European Association of Cardiovascular Imaging. J Am Soc Echocardiogr 28:1–39.e14

    Article  Google Scholar 

  27. Mehra MR, Crespo-Leiro MG, Dipchand A, Ensminger SM, Hiemann NE, Kobashigawa JA, Madsen J, Parameshwar J, Starling RC, Uber PA (2010) International Society for Heart and Lung Transplantation working formulation of a standardized nomenclature for cardiac allograft vasculopathy-2010. J Heart Lung Transplant 29:717–727

    Article  Google Scholar 

  28. Gibson CM, Cannon CP, Daley WL, Dodge JT, Alexander B, Marble SJ, McCabe CH, Raymond L, Fortin T, Poole WK, Braunwald E (1996) TIMI frame count: a quantitative method of assessing coronary artery flow. Circulation 93:879–888

    Article  CAS  Google Scholar 

  29. Billingham ME, Cary NR, Hammond ME, Kemnitz J, Marboe C, McCallister HA, Snovar DC, Winters GL, Zerbe A (1990) A working formulation for the standardization of nomenclature in the diagnosis of heart and lung rejection: Heart Rejection Study Group. The International Society for Heart Transplantation. J Heart Transplant 9:587–593

    CAS  PubMed  Google Scholar 

  30. Lockie T, Ishida M, Perera D, Chiribiri A, De Silva K, Kozerke S, Marber M, Nagel E, Rezavi R, Redwood S, Plein S (2011) High-resolution magnetic resonance myocardial perfusion imaging at 3.0-Tesla to detect hemodynamically significant coronary stenoses as determined by fractional flow reserve. J Am Coll Cardiol 57:70–75

    Article  Google Scholar 

  31. Li M, Zhou T, Yang LF, Peng ZH, Ding J, Sun G (2014) Diagnostic accuracy of myocardial magnetic resonance perfusion to diagnose ischemic stenosis with fractional flow reserve as reference: systematic review and meta-analysis. JACC Cardiovasc Imaging 7:1098–1105

    Article  Google Scholar 

  32. Takx RA, Blomberg BA, El Aidi H, Habets J, de Jong PA, Nagel E, Hoffmann U, Leiner T (2015) Diagnostic accuracy of stress myocardial perfusion imaging compared to invasive coronary angiography with fractional flow reserve meta-analysis. Circ Cardiovasc Imaging 8(1):e002666

    Article  Google Scholar 

  33. Pontone G, Andreini D, Bertella E, Loguercio M, Guglielmo M, Baggiano A, Aquaro GD, Mushtaq S, Salerni S, Gripari P, Rossi C, Segurini C, Conte E, Beltrama V, Giovannardi M, Veglia F, Guaricci AI, Bartorelli AL, Agostoni P, Pepi M, Masci PG (2015) Prognostic value of dipyridamole stress cardiac magnetic resonance in patients with known or suspected coronary artery disease: a mid-term follow-up study. Eur Radiol 26(7):2155–2165

    Article  Google Scholar 

  34. Chih S, Ross HJ, Alba AC, Fan CS, Manlhiot C, Crean AM (2016) Perfusion cardiac magnetic resonance imaging as a rule-out test for cardiac allograft vasculopathy. Am J Transplant 16(10):3007–3015

    Article  CAS  Google Scholar 

  35. Erbel C, Mukhammadaminova N, Gleissner CA, Osman NF, Hofmann NP, Steuer C, Akhavanpoor M, Wangler S, Celik S, Doesch AO, Voss A, Buss SJ, Schnabel PA, Katus HA, Korosoglou G (2016) Myocardial perfusion reserve and strain-encoded cmr for evaluation of cardiac allograft microvasculopathy. JACC Cardiovasc Imaging 9:255–266

    Article  Google Scholar 

  36. Muehling OM, Wilke NM, Panse P, Jerosch-Herold M, Wilson BV, Wilson RF, Miller LW (2003) Reduced myocardial perfusion reserve and transmural perfusion gradient in heart transplant arteriopathy assessed by magnetic resonance imaging. J Am Coll Cardiol 42:1054–1060

    Article  Google Scholar 

  37. Korosoglou G, Osman NF, Dengler TJ, Riedle N, Steen H, Lehrke S, Giannitsis E, Katus HA (2009) Strain-encoded cardiac magnetic resonance for the evaluation of chronic allograft vasculopathy in transplant recipients. Am J Transplant 9:2587–2596

    Article  CAS  Google Scholar 

  38. Mirelis JG, García-Pavía P, Cavero MA, González-López E, Echavarria-Pinto M, Pastrana M, Segovia J, Oteo JF, Alonso-Pulpón L, Escaned J (2015) Magnetic resonance for noninvasive detection of microcirculatory disease associated with allograft vasculopathy: intracoronary measurement validation. Rev Esp Cardiol 68:571–578

    Article  Google Scholar 

  39. Collier P, Phelan D, Klein A (2017) A test in context: myocardial strain measured by speckle-tracking echocardiography. J Am Coll Cardiol 69:1043–1056

    Article  Google Scholar 

  40. Sarvari SI, Gjesdal O, Gude E, Arora S, Andreassen AK, Gullestad L, Geiran O, Edvardsen T (2012) Early postoperative left ventricular function by echocardiographic strain is a predictor of 1-year mortality in heart transplant recipients. J Am Soc Echocardiogr 25:1007–1014

    Article  Google Scholar 

  41. Clemmensen TS, Eiskjær H, Løgstrup BB, Ilkjær LB, Poulsen SH (2017) Left ventricular global longitudinal strain predicts major adverse cardiac events and all-cause mortality in heart transplant patients. J Heart Lung Transplant 36:567–576

    Article  Google Scholar 

  42. Lund LH, Edwards LB, Kucheryavaya AY, Benden C, Dipchand AI, Goldfarb S, Levvey BJ, Meiser B, Rossano JW, Yusen RD, Stehlik J (2015) The Registry of the International Society for Heart and Lung Transplantation: thirty-second official adult heart transplantation report–2015; focus theme: early graft failure. J Heart Lung Transplant 34:1244–1254

    Article  Google Scholar 

  43. Kunadian V, Harrigan C, Zorkun C, Palmer AM, Ogando KJ, Biller LH, Lord EE, Williams SP, Lew ME, Ciaglo LN, Buros JL, Marble SJ, Gibson WJ, Gibson CM (2009) Use of the TIMI frame count in the assessment of coronary artery blood flow and microvascular function over the past 15 years. J Thromb Thrombolysis 27:316–328

    Article  Google Scholar 

  44. Sun H, Fukumoto Y, Ito A, Shimokawa H, Sunagawa K (2005) Coronary microvascular dysfunction in patients with microvascular angina: analysis by TIMI frame count. J Cardiovasc Pharmacol 46:622–626

    Article  CAS  Google Scholar 

  45. Petersen JW, Johnson BD, Kip KE, Anderson RD, Handberg EM, Sharaf B, Mehta PK, Kelsey SF, Merz CN, Pepine CJ (2014) TIMI frame count and adverse events in women with no obstructive coronary disease: a pilot study from the NHLBI-sponsored Women’s Ischemia Syndrome Evaluation (WISE). PLoS ONE 9:e96630

    Article  Google Scholar 

  46. Braggion-Santos MF, Lossnitzer D, Buss S, Lehrke S, Doesch A, Giannitsis E, Korosoglou G, Katus HA, Steen H (2014) Late gadolinium enhancement assessed by cardiac magnetic resonance imaging in heart transplant recipients with different stages of cardiac allograft vasculopathy. Eur Heart J Cardiovasc Imaging 15:1125–1132

    Article  Google Scholar 

  47. Dong L, Maehara A, Nazif TM, Pollack AT, Saito S, Rabbani LE, Apfelbaum MA, Dalton K, Moses JW, Jorde UP, Xu K, Mintz GS, Mancini DM, Weisz G (2014) Optical coherence tomographic evaluation of transplant coronary artery vasculopathy with correlation to cellular rejection. Circ Cardiovasc Interv 7:199–206

    Article  Google Scholar 

  48. Zakliczynski M, Nozynski J, Konecka-Mrowka D, Pyka L, Trybunia D, Swierad M, Maruszewski M, Zembala M (2009) Quilty effect correlates with biopsy-proven acute cellular rejection but does not predict transplanted heart coronary artery vasculopathy. J Heart Lung Transplant 28:255–259

    Article  Google Scholar 

  49. Hammond EH, Yowell RL, Price GD, Menlove RL, Olsen SL, O’Connell JB, Bristow MR, Doty DB, Millar RC, Karwande SV (1992) Vascular rejection and its relationship to allograft coronary artery disease. J Heart Lung Transplant 11:S111–S119

    CAS  PubMed  Google Scholar 

  50. Sera F, Kato TS, Farr M, Russo C, Jin Z, Marboe CC, Di Tullio MR, Mancini D, Homma S (2014) Left ventricular longitudinal strain by speckle-tracking echocardiography is associated with treatment-requiring cardiac allograft rejection. J Card Fail 20:359–364

    Article  Google Scholar 

  51. Romano G, Raffa GM, Licata P, Tuzzolino F, Baravoglia CH, Sciacca S, Scardulla C, Pilato M, Lancellotti P, Clemenza F, Bellavia D (2016) Can multiple previous treatment-requiring rejections affect biventricular myocardial function in heart transplant recipients? A two-dimensional speckle-tracking study. Int J Cardiol 209:54–56

    Article  Google Scholar 

  52. Chih S, Chong AY, Mielniczuk LM, Bhatt DL, Beanlands RS (2016) Allograft vasculopathy: the Achilles’ heel of heart transplantation. J Am Coll Cardiol 68:80–91

    Article  Google Scholar 

  53. Bhave NM, Freed BH, Yodwut C, Kolanczyk D, Dill K, Lang RM, Mor-Avi V, Patel AR (2012) Considerations when measuring myocardial perfusion reserve by cardiovascular magnetic resonance using regadenoson. J Cardiovasc Magn Reson 14:89

    Article  Google Scholar 

Download references

Acknowledgements

The study was funded by a T32 Cardiovascular Sciences Training Grant (5T32HL7381) (AN). The authors received research grants from Philips Healthcare (RML, ARP) and Astellas Pharma (VM and ARP) for other unrelated studies.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amit R. Patel.

Ethics declarations

Conflict of interest

There are no conflicts of interest among the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Narang, A., Blair, J.E., Patel, M.B. et al. Myocardial perfusion reserve and global longitudinal strain as potential markers of coronary allograft vasculopathy in late-stage orthotopic heart transplantation. Int J Cardiovasc Imaging 34, 1607–1617 (2018). https://doi.org/10.1007/s10554-018-1364-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10554-018-1364-7

Keywords

Navigation