Skip to main content
Log in

Performance of native and contrast-enhanced T1 mapping to detect myocardial damage in patients with suspected myocarditis: a head-to-head comparison of different cardiovascular magnetic resonance techniques

  • Original Paper
  • Published:
The International Journal of Cardiovascular Imaging Aims and scope Submit manuscript

Abstract

Myocardial T1 mapping is a novel technique that has proven to be superior to standard imaging for differentiation between healthy individuals in acute myocarditis. Aim of this study was comparison of T1 mapping with a clinical biomarker. We retrospectively investigated 171 patients undergoing cardiovascular magnetic resonance (CMR) examination with suspected myocarditis by performing native and contrast enhanced T1-mapping. Additionally, T2w and T1w images and late gadolinium enhancement sequences (LGE) were utilized for myocardial evaluation; Lake Louise Criteria comprise T1w, T2w and LGE imaging in a score. Reference for positive myocarditis diagnosis was a ten-fold increase of troponin level above normal (0.14 ng/ml). Native T1 and extracellular volume (ECV) showed good association with relevant troponin elevations. Area under the curve (AUC) was 81% (p = 0.0001) for native T1 with an optimal threshold of 979 ms and 86% (p < 0.0001) for ECV with an optimal cutoff of 32.4%. AUC for T2w imaging (T2-signal intensity ratio to skeletal muscle) was 77% (p = 0.0003). AUC for T2w imaging (T2-signal intensity compared to remote myocardium) was 69% (p = 0.012). Additionally, we found positive correlation for native T1 and ECV with the Lake Louise Criteria (r = 0.44, p = 0.0001 for native T1 and r = 0.45, p = 0.0001 for ECV). Correlated to troponin as biomarker, ECV and native T1 mapping perform at least equally well in comparison to established CMR-techniques LGE, T2w imaging and the combined Lake Louise Criteria in detecting acute myocardial damage. Normal ECV values rule out myocardial damage with very high certainty. T1 mapping qualifies for further prospective evaluations to evolve as a separate biomarker.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Shauer A, Gotsman I, Keren A, Zwas DR, Hellman Y, Durst R, Admon D (2013) Acute viral myocarditis: current concepts in diagnosis and treatment. Isr Med Assoc J 15(3):180–185

    PubMed  Google Scholar 

  2. Friedrich MG, Sechtem U, Schulz-Menger J, Holmvang G, Alakija P, Cooper LT, White JA, Abdel-Aty H, Gutberlet M, Prasad S, Aletras A, Laissy JP, Paterson I, Filipchuk NG, Kumar A, Pauschinger M, Liu P, International Consensus Group on Cardiovascular Magnetic Resonance in Myocarditis (2009) Cardiovascular magnetic resonance in myocarditis: a JACC White Paper. J Am Coll Cardiol 53(17):1475–1487. doi:10.1016/j.jacc.2009.02.007

    Article  PubMed  PubMed Central  Google Scholar 

  3. McCarthy RE, Boehmer JP, Hruban RH, Hutchins GM, Kasper EK, Hare JM, Baughman KL (2000) Long-term outcome of fulminant myocarditis as compared with acute (nonfulminant) myocarditis. New Engl J Med 342(10):690–695. doi:10.1056/Nejm200003093421003

    Article  PubMed  Google Scholar 

  4. Ferreira VM, Piechnik SK, Dall’Armellina E, Karamitsos TD, Francis JM, Choudhury RP, Friedrich MG, Robson MD, Neubauer S (2012) Non-contrast T1-mapping detects acute myocardial edema with high diagnostic accuracy: a comparison to T2-weighted cardiovascular magnetic resonance. J Cardiovasc Magn Reson 14:42. doi:10.1186/1532-429X-14-42

    Article  PubMed  PubMed Central  Google Scholar 

  5. Ferreira VM, Piechnik SK, Dall’Armellina E, Karamitsos TD, Francis JM, Ntusi N, Holloway C, Choudhury RP, Kardos A, Robson MD, Friedrich MG, Neubauer S (2013) T(1) mapping for the diagnosis of acute myocarditis using CMR: comparison to T2-weighted late gadolinium enhanced imaging. JACC Cardiovasc Imaging 6(10):1048–1058. doi:10.1016/j.jcmg.2013.03.008

    Article  PubMed  Google Scholar 

  6. Friedrich MG (2009) A closer look on the battlefield: the salvaged area at risk as an outcome marker for myocardial reperfusion. JACC Cardiovasc Imaging 2(5):577–579. doi:10.1016/j.jcmg.2009.03.005

    Article  PubMed  Google Scholar 

  7. Kellman P, Aletras AH, Mancini C, McVeigh ER, Arai AE (2007) T2-prepared SSFP improves diagnostic confidence in edema imaging in acute myocardial infarction compared to turbo spin echo. Magn Reson Med 57(5):891–897. doi:10.1002/mrm.21215

    Article  PubMed  PubMed Central  Google Scholar 

  8. Ugander M, Bagi PS, Oki AJ, Chen B, Hsu LY, Aletras AH, Shah S, Greiser A, Kellman P, Arai AE (2012) Myocardial edema as detected by pre-contrast T1 and T2 CMR delineates area at risk associated with acute myocardial infarction. JACC Cardiovasc Imaging 5(6):596–603. doi:10.1016/j.jcmg.2012.01.016

    Article  PubMed  PubMed Central  Google Scholar 

  9. Ugander M, Oki AJ, Hsu LY, Kellman P, Greiser A, Aletras AH, Sibley CT, Chen MY, Bandettini WP, Arai AE (2012) Extracellular volume imaging by magnetic resonance imaging provides insights into overt and sub-clinical myocardial pathology. Eur Heart J 33(10):1268–1278. doi:10.1093/eurheartj/ehr481

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Ruberg FL (2013) T1 mapping in cardiac amyloidosis: can we get there from here? JACC Cardiovasc Imaging 6(4):498–500. doi:10.1016/j.jcmg.2013.01.007

    Article  PubMed  Google Scholar 

  11. Pedersen SF, Thrysoe SA, Robich MP, Paaske WP, Ringgaard S, Botker HE, Hansen ES, Kim WY (2012) Assessment of intramyocardial hemorrhage by T1-weighted cardiovascular magnetic resonance in reperfused acute myocardial infarction. J Cardiovasc Magn Reson 14(1):59. doi:10.1186/1532-429X-14-59

    Article  PubMed  PubMed Central  Google Scholar 

  12. Moon JC, Messroghli DR, Kellman P, Piechnik SK, Robson MD, Ugander M, Gatehouse PD, Arai AE, Friedrich MG, Neubauer S, Schulz-Menger J, Schelbert EB, Society for Cardiovascular Magnetic Resonance Imaging, Cardiovascular Magnetic Resonance Working Group of the European Society of Cardiology (2013) Myocardial T1 mapping and extracellular volume quantification: a Society for Cardiovascular Magnetic Resonance (SCMR) and CMR Working Group of the European Society of Cardiology consensus statement. J Cardiovasc Magn Reson 15:92. doi:10.1186/1532-429X-15-92

    Article  PubMed  PubMed Central  Google Scholar 

  13. Banypersad SM, Sado DM, Flett AS, Gibbs SD, Pinney JH, Maestrini V, Cox AT, Fontana M, Whelan CJ, Wechalekar AD, Hawkins PN, Moon JC (2013) Quantification of myocardial extracellular volume fraction in systemic AL amyloidosis: an equilibrium contrast cardiovascular magnetic resonance study. Circ Cardiovasc Imaging 6(1):34–39. doi:10.1161/CIRCIMAGING.112.978627

    Article  PubMed  Google Scholar 

  14. Fontana M, White SK, Banypersad SM, Sado DM, Maestrini V, Flett AS, Piechnik SK, Neubauer S, Roberts N, Moon JC (2012) Comparison of T1 mapping techniques for ECV quantification. Histological validation and reproducibility of ShMOLLI versus multibreath-hold T1 quantification equilibrium contrast. CMR J Cardiovasc Magn Reson 14(1):88. doi:10.1186/1532-429X-14-88

    Article  PubMed  Google Scholar 

  15. Lurz P, Luecke C, Eitel I, Fohrenbach F, Frank C, Grothoff M, de Waha S, Rommel KP, Lurz JA, Klingel K, Kandolf R, Schuler G, Thiele H, Gutberlet M (2016) Comprehensive cardiac magnetic resonance imaging in patients with suspected myocarditis: the MyoRacer-Trial. J Am Coll Cardiol 67(15):1800–1811. doi:10.1016/j.jacc.2016.02.013

    Article  PubMed  Google Scholar 

  16. Hadamitzky M, Langhans B, Hausleiter J, Sonne C, Kastrati A, Martinoff S, Schomig A, Ibrahim T (2013) The assessment of area at risk and myocardial salvage after coronary revascularization in acute myocardial infarction: comparison between CMR and SPECT. JACC Cardiovasc Imaging 6(3):358–369. doi:10.1016/j.jcmg.2012.10.018

    Article  PubMed  Google Scholar 

  17. Friedrich MG, Strohm O, Schulz-Menger J, Marciniak H, Luft FC, Dietz R (1998) Contrast media-enhanced magnetic resonance imaging visualizes myocardial changes in the course of viral myocarditis. Circulation 97(18):1802–1809

    Article  CAS  PubMed  Google Scholar 

  18. Kellman P, Arai AE, Xue H (2013) T1 and extracellular volume mapping in the heart: estimation of error maps and the influence of noise on precision. J Cardiovasc Magn Reson 15:56. doi:10.1186/1532-429X-15-56

    Article  PubMed  PubMed Central  Google Scholar 

  19. Mukaka M (2012) A guide to appropriate use of correlation coefficient in medical research. Malawi Med J 24(3):69–71

    CAS  PubMed  PubMed Central  Google Scholar 

  20. DeLong ER, DeLong DM, Clarke-Pearson DL (1988) Comparing the areas under two or more correlated receiver operating characteristic curves: a nonparametric approach. Biometrics 44(3):837–845

    Article  CAS  PubMed  Google Scholar 

  21. Bender R, Lange S, Ziegler A (2007) Multiples Testen. DMW Dtsch Med Wochenschr 132(S 01):e26–e29

    Article  Google Scholar 

  22. Team RDC (2010) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna

    Google Scholar 

  23. Friedrich MG (2015) Myocardial T1: the rise of a novel biomarker continues. JACC Cardiovasc Imaging 8(1):47–49. doi:10.1016/j.jcmg.2014.10.002

    Article  PubMed  Google Scholar 

  24. Kishimoto C, Hiraoka Y (1994) Clinical and experimental studies in myocarditis. Curr Opin Cardiol 9(3):349–356

    Article  CAS  PubMed  Google Scholar 

  25. Wince WB, Kim RJ (2010) Molecular imaging: T2-weighted CMR of the area at risk—a risky business? Nat Rev Cardiol 7(10):547–549. doi:10.1038/nrcardio.2010.124

    Article  PubMed  Google Scholar 

  26. Abbas NA, John RI, Webb MC, Kempson ME, Potter AN, Price CP, Vickery S, Lamb EJ (2005) Cardiac troponins and renal function in nondialysis patients with chronic kidney disease. Clin Chem 51(11):2059–2066

    Article  CAS  PubMed  Google Scholar 

  27. Seliger SL, Kelley W, Duh S-H, Hise M, Christenson RH, Wolf M, Gaggin H, Januzzi J (2012) Interpreting cardiac troponin results from high-sensitivity assays in chronic kidney disease without acute coronary syndrome. Clin Chem 58(9):1342–1351

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jonathan Nadjiri.

Ethics declarations

Conflict of interest

Andreas Greiser is a full-time employee of Siemens Healthcare GmbH. The other authors have nothing to disclose. This is an investigator-driven study; there is no involvement from outside the departments.

Disclosures

Andreas Greiser is a full-time employee of Siemens Healthcare. The other authors have nothing to disclose.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards. The study design was approved by the local ethics committee.

Informed consent

This is a retrospective study; all patients underwent clinically indicated CMR examination. All personal details were anonymized for evaluation and publication. Informed consent was waived by the local ethics committee.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nadjiri, J., Nieberler, H., Hendrich, E. et al. Performance of native and contrast-enhanced T1 mapping to detect myocardial damage in patients with suspected myocarditis: a head-to-head comparison of different cardiovascular magnetic resonance techniques. Int J Cardiovasc Imaging 33, 539–547 (2017). https://doi.org/10.1007/s10554-016-1029-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10554-016-1029-3

Keywords

Navigation