Skip to main content
Log in

Acute ischemic stroke imaging: a practical approach for diagnosis and triage

  • Original Paper
  • Published:
The International Journal of Cardiovascular Imaging Aims and scope Submit manuscript

Abstract

Ischemic stroke is a prevalent disease with significant associated morbidity and healthcare costs. There are currently effective intravenous and endovascular therapies that have the potential to improve functional outcome when used in the appropriate patient population. The utilization of various imaging modalities has been shown to be crucial in identifying which patients may benefit from these therapies. Therefore, a thorough understanding of the role that imaging plays in guiding therapeutic decisions in acute ischemic stroke patients is important.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Kochanek KD, Xu JQ, Murphy SL, Miniño AM, Kung HC (2011) Deaths: final data for 2009. Natl Vital Stat Rep 60:1–116

    PubMed  Google Scholar 

  2. Go AS, Mozaffarian D, Roger VL et al (2014) Heart disease and stroke statistics—2014 update: a report from the American Heart Association. Circulation 129:e28–e292

    Article  PubMed  Google Scholar 

  3. Hisham NF, Bayraktutan U (2013) Epidemiology, pathphysiology, and treatment of hypertension in ischaemic stroke patients. J Stroke Cerebrovasc Dis 22:e4–e14

    Article  PubMed  Google Scholar 

  4. Bamford J, Sandercock P, Dennis M, Burn J, Warlow C (1991) Classification and natural history of clinically identifiable subtypes of cerebral infarction. Lancet 337:1521–1526

    Article  PubMed  CAS  Google Scholar 

  5. Lee H, Yoon YE, Kim YJ et al (2015) Presence and extent of coronary calcified plaque evaluated by coronary computed tomographic angiography are independent predictors of ischemic stroke in patients with suspected coronary artery disease. Int J Cardiovasc Imaging. doi:10.1007/s10554-015-0709-8

  6. Yoon YE, Chang HJ, Cho I et al (2011) Incidence of subclinical coronary atherosclerosis in patients with suspected embolic stroke using cardiac computed tomography. Int J Cardiovasc Imaging 27:1035–1044

    Article  PubMed  Google Scholar 

  7. Bivard A, Lin L, Parsonsb MW (2013) Review of stroke thrombolytics. J Stroke 15:90–98

    Article  PubMed  PubMed Central  Google Scholar 

  8. Appireddy RM, Demchuk AM, Goyal M, Menon BK, Eesa M, Choi P, Hill MD (2015) Endovascular therapy for ischemic stroke. J Clin Neurol 11:1–8

    Article  PubMed  PubMed Central  Google Scholar 

  9. Jauch EC, Saver JL, Adams HP Jr et al (2013) Guidelines for the early management of patients with acute ischemic stroke: a guideline for healthcare professionals from the American Heart Association/American Stroke Association. Stroke 44:870–947

    Article  PubMed  Google Scholar 

  10. Saqqur M, Uchino K, Demchuk AM et al (2007) Site of arterial occlusion identified by transcranial Doppler predicts the response to intravenous thrombolysis for stroke. Stroke 38:948–954

    Article  PubMed  Google Scholar 

  11. Furlan A, Higashida R, Wechsler L et al (1999) Intra-arterial prourokinase for acute ischemic stroke. The PROACT II study: a randomized controlled trial. Prolyse in Acute Cerebral Thromboembolism. JAMA 282:2003–2011

    Article  PubMed  CAS  Google Scholar 

  12. Smith WS, Sung G, Starkman S et al (2005) Safety and efficacy of mechanical embolectomy in acute ischemic stroke: results of the MERCI trial. Stroke 36:1432–1438

    Article  PubMed  Google Scholar 

  13. Penumbra Pivotal Stroke Trial Investigators (2009) The penumbra pivotal stroke trial: safety and effectiveness of a new generation of mechanical devices for clot removal in intracranial large vessel occlusive disease. Stroke 40:2761–2768

    Article  Google Scholar 

  14. Jahromi AS, Cina CS, Liu Y, Clase CM (2005) Sensitivity and specificity of color duplex ultrasound measurement in the estimation of internal carotid artery stenosis: a systematic review and meta-analysis. Vasc Surg 41:968–972

    Article  Google Scholar 

  15. North American Symptomatic Carotid Endarterectomy Trial Collaborators (2000) The causes and risk of stroke in patients with asymptomatic internal-carotid-artery stenosis. N Engl J Med 342:1693–1700

    Article  Google Scholar 

  16. North American Symptomatic Carotid Endarterectomy Trial Collaborators (1998) Benefit of carotid endarterectomy in patients with symptomatic moderate or severe stenosis. N Engl J Med 339:1415–1425

    Article  Google Scholar 

  17. Chen Q, Liu Y, Pei L, Ke D, Li G, Deng W, Yao W (2009) Characteristics of carotid artery disease (CAD) and presenting cerebrovascular symptoms in an aged group. Int J Cardiovasc Imaging 25:127–132

    Article  PubMed  Google Scholar 

  18. Ohyama M, Mizushige K, Ohyama H, Takahashi T, Hosomi N, Ichihara S, Kohno M (2002) Carotid turbulent flow observed by convergent color Doppler flowmetry in silent cerebral infarction. Int J Cardiovasc Imaging 18:119–124

    Article  PubMed  Google Scholar 

  19. The National Institute of Neurological Disorders and Stroke rt-PA Stroke Study Group (1995) Tissue plasminogen activator for acute ischemic stroke. N Engl J Med 333:1581–1587

    Article  Google Scholar 

  20. Hacke W, Kaste M, Fieschi C et al (1995) Intravenous thrombolysis with recombinant tissue plasminogen activator for acute hemispheric stroke. The European Cooperative Acute Stroke Study (ECASS). JAMA 274:1017–1025

    Article  PubMed  CAS  Google Scholar 

  21. Barber PA, Demchuk AM, Zhang J, Buchan AM (2000) Validity and reliability of a quantitative computed tomography score in predicting outcome of hyperacute stroke before thrombolytic therapy. ASPECTS Study Group. Alberta Stroke Programme Early CT Score. Lancet 355:1670–1674

    Article  PubMed  CAS  Google Scholar 

  22. Hill MD, Rowley HA, Adler F et al (2003) Selection of acute ischemic stroke patients for intra-arterial thrombolysis with pro-urokinase by using ASPECTS. Stroke 34:1925–1931

    Article  PubMed  Google Scholar 

  23. Hill MD, Demchuk AM, Tomsick TA, Palesch YY, Broderick JP (2006) Using the baseline CT scan to select acute stroke patients for IV-IA therapy. AJNR Am J Neuroradiol 27:1612–1616

    PubMed  CAS  Google Scholar 

  24. Mak HK, Yau KK, Khong PL et al (2003) Hypodensity of > 1/3 middle cerebral artery territory versus Alberta Stroke Programme Early CT Score (ASPECTS): comparison of two methods of quantitative evaluation of early CT changes in hyperacute ischemic stroke in the community setting. Stroke 34:1194–1196

    Article  PubMed  Google Scholar 

  25. Lev MH, Farkas J, Gemmete JJ et al (1999) Acute stroke: improved nonenhanced CT detection—benefits of soft-copy interpretation by using variable window width and center level settings. Radiology 213:150–155

    Article  PubMed  CAS  Google Scholar 

  26. Chalela JA, Kidwell CS, Nentwich LM et al (2007) Magnetic resonance imaging and computed tomography in emergency assessment of patients with suspected acute stroke: a prospective comparison. Lancet 369:293–298

    Article  PubMed  PubMed Central  Google Scholar 

  27. Barber PA, Darby DG, Desmond PM et al (1999) Identification of major ischemic change. Diffusion weighted imaging versus computed tomography. Stroke 30:2059–2065

    Article  PubMed  CAS  Google Scholar 

  28. Lansberg MG, Albers GW, Beaulieu C, Marks MP (2000) Comparison of diffusion-weighted MRI and CT in acute stroke. Neurology 54:1557–1561

    Article  PubMed  CAS  Google Scholar 

  29. Leys D, Pruvo JP, Godefroy O, Rondepierre P, Leclerc X (1992) Prevalence and significance of hyperdense middle cerebral artery in acute stroke. Stroke 23:317–324

    Article  PubMed  CAS  Google Scholar 

  30. Agarwal P, Kumar S, Hariharan S, Eshkar N, Verro P, Cohen B, Sen S (2004) Hyperdense middle cerebral artery sign: can it be used to select intra-arterial versus intravenous thrombolysis in acute ischemic stroke? Cerebrovasc Dis 17:182–190

    Article  PubMed  Google Scholar 

  31. Riedel CH, Jensen U, Rohr A, Tietke M, Alfke K, Ulmer S, Jasnsen O (2010) Assesssment of thrombus in acute middle cerebral artery occlusion using thin-slice nonenhanced computed tomography reconstructions. Stroke 41:1659–1664

    Article  PubMed  Google Scholar 

  32. Riedel CH, Zimmermann P, Jensen-Kondering U, Stingele R, Deuschl G, Jansen O (2011) The importance of size: successful recanalization by intravenous thrombolysis in acute anterior stroke depends on thrombus length. Stroke 42:1775–1777

    Article  PubMed  Google Scholar 

  33. Barber PA, Demchuk AM, Hudon ME, Pexman JH, Hill MD, Buchan AM (2001) Hyperdense sylvian fissure MCA “dot” sign: a CT marker of acute ischemia. Stroke 32:84–88

    Article  PubMed  CAS  Google Scholar 

  34. Lev MH, Farkas J, Rodriguez VR et al (2001) CT angiography in the rapid triage of patients with hyperacute stroke to intraarterial thrombolysis: accuracy in the detection of large vessel thrombus. J Comput Assist Tomogr 25:520–528

    Article  PubMed  CAS  Google Scholar 

  35. Bash S, Villablanca JP, Jahan R et al (2005) Intracranial vascular stenosis and occlusive disease: evaluation with CT angiography, MR angiography, and digital subtraction angiography. AJNR Am J Neuroradiol 26:1012–1021

    PubMed  Google Scholar 

  36. Tan IY, Demchuk AM, Hopyan J et al (2009) CT angiography clot burden score and collateral score: correlation with clinical and radiologic outcomes in acute middle cerebral artery infarct. AJNR Am J Neuroradiol 30:525–531

    Article  PubMed  CAS  Google Scholar 

  37. Smith WS, Lev MH, English JD et al (2009) Significance of large vessel intracranial occlusion causing acute ischemic stroke and TIA. Stroke 40:3834–3840

    Article  PubMed  PubMed Central  Google Scholar 

  38. Cipriano LE, Steinberg ML, Gazelle GS, González RG (2009) Comparing and predicting the costs and outcomes of patients with major and minor stroke using the Boston Acute Stroke Imaging Scale neuroimaging classification system. Am J Neuroradiol 30:703–739

    Article  PubMed  CAS  Google Scholar 

  39. Gonzalez RG, Furie KL, Goldmacher GV et al (2013) Good outcome rate of 35% in IV-tPA-treated patients with computed tomography angiography confirmed severe anterior circulation occlusive stroke. Stroke 44:3109–3113

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  40. Lewandowski CA, Frankel M, Tomsick TA et al (1999) Combined intravenous and intra-arterial r-TPA versus intra-arterial therapy of acute ischemic stroke: Emergency Management of Stroke (EMS) Bridging Trial. Stroke 30:2598–2605

    Article  PubMed  CAS  Google Scholar 

  41. IMS Study Investigators (2004) Combined intravenous and intra-arterial recanalization for acute ischemic stroke: the Interventional Management of Stroke Study. Stroke 35:904–911

    Article  Google Scholar 

  42. IMS II Trial Investigators (2007) The Interventional Management of Stroke (IMS) II Study. Stroke 38:2127–2135

    Article  Google Scholar 

  43. Broderick JP, Palesch YY, Demchuk et al (2013) Endovascular therapy after intravenous t-PA versus t-PA alone for stroke. N Engl J Med 368:893–903

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  44. Ciccone A, Valvassori L, Nichelatti M, Sgoifo A, Ponzio M, Sterzi R, Boccardi E (2013) Endovascular treatment for acute ischemic stroke. N Engl J Med 368:904–913

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  45. Kidwell CS, Jahan R, Gornbein J J et al (2013) A trial of imaging selection and endovascular treatment for ischemic stroke. N Engl J Med 368:914–923

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  46. Nogueira RG, Lutsep HL, Gupta R, Jovin TG, Albers GW, Walker GA, Liebeskind DS, Smith WS (2012) Trevo versus Merci retrievers for thrombectomy revascularisation of large vessel occlusions in acute ischaemic stroke (TREVO 2): a randomised trial. Lancet 380:1231–1240

    Article  PubMed  PubMed Central  Google Scholar 

  47. Saver JL, Jahan R, Levy EI, Jovin TG, Baxter B, Nogueira RG, Clark W, Budzik R, Zaidat OO (2012) Solitaire flow restoration device versus the Merci Retriever in patients with acute ischaemic stroke (SWIFT): a randomised, parallel-group, non-inferiority trial. Lancet 380:1241–1249

    Article  PubMed  Google Scholar 

  48. Berkhemer OA, Fransen PS, Beumer D et al (2015) A randomized trial of intraarterial treatment for acute ischemic stroke. N Engl J Med 372:11–20

    Article  PubMed  CAS  Google Scholar 

  49. Campbell BC, Mitchell PJ, Kleinig TJ et al (2015) Endovascular therapy for ischemic stroke with perfusion-imaging selection. N Engl J Med 372:1009–1018

    Article  PubMed  CAS  Google Scholar 

  50. Goyal M, Demchuk AM, Menon BK et al (2015) Randomized assessment of rapid endovascular treatment of ischemic stroke. N Engl J Med 372:1019–1030

    Article  PubMed  CAS  Google Scholar 

  51. Saver JL, Goyal M, Bonafe A et al (2015) Stent-retriever thrombectomy after intravenous t-PA vs. t-PA alone in stroke. N Engl J Med 372:2285–2295

    Article  PubMed  CAS  Google Scholar 

  52. Jovin TG, Chamorro A, Cobo E et al (2015) Thrombectomy within 8 hours after symptom onset in ischemic stroke. N Engl J Med 372:2297–2306

    Article  CAS  Google Scholar 

  53. Lima FO, Furie KL, Silva GS et al (2010) The pattern of leptomeningeal collaterals on CT angiography is a strong predictor of long-term functional outcome in stroke patients with large vessel intracranial occlusion. Stroke 41:2316–2322

    Article  PubMed  Google Scholar 

  54. Maas MB, Lev MH, Singhal AB et al (2009) Collateral vessels on CT angiography predict outcome in acute ischemic stroke. Stroke 40:3001–3005

    Article  PubMed  PubMed Central  Google Scholar 

  55. Menon BK, Smith EE, Modi J et al (2011) Regional leptomeningeal score on CT angiography predicts clinical and imaging outcomes in patients with acute anterior circulation occlusions. Am J Neuroradiol 32:1640–1645

    Article  PubMed  CAS  Google Scholar 

  56. Souza LC, Yoo AJ, Chaudhry ZA et al (2012) Malignant CTA collateral profile is highly specific for large admission DWI infarct core and poor outcome in acute stroke. Am J Neuroradiol 33:1331–1336

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  57. Menon BK, d’Esterre CD, Qazi EM, Almekhlafi M, Hahn L, Demchuk AM, Goyal M (2015) Multiphase CT angiography: a new tool for the imaging triage of patients with acute ischemic stroke. Radiology 275:510–520

    Article  PubMed  Google Scholar 

  58. Coutts SB, Lev MH, Eliasziw M et al (2004) ASPECTS on CTA source images versus unenhanced CT: added value in predicting final infarct extent and clinical outcome. Stroke 35:2472–2476

    Article  PubMed  Google Scholar 

  59. Schramm P, Schellinger PD, Fiebach JB, Heiland S, Jansen O, Knauth M, Hacke W, Sartor K (2002) Comparison of CT and CT angiography source images with diffusion-weighted imaging in patients with acute stroke within 6 hours after onset. Stroke 33:2426–2432

    Article  PubMed  Google Scholar 

  60. Yoo AJ, Hu R, Hakimelahi R, Lev MH, Nogueira RG, Hirsch JA, González RG, Schaefer PW (2012) CT angiography source images acquired with a fast-acquisition protocol overestimate infarct core on diffusion weighted images in acute ischemic stroke. J Neuroimaging 22:329–335

    Article  PubMed  PubMed Central  Google Scholar 

  61. North American Symptomatic Carotid Endarterectomy Trial Collaborators (1991) Beneficial effect of carotid endarterectomy in symptomatic patients with high-grade carotid stenosis. N Engl J Med 325:445–453

    Article  Google Scholar 

  62. Yadav JS, Wholey MH, Kuntz RE et al (2004) Protected carotid-artery stenting versus endarterectomy in high-risk patients. N Engl J Med 351:1493–1501

    Article  PubMed  CAS  Google Scholar 

  63. Manninen AL, Isokangas JM, Karttunen A, Siniluoto T, Nieminen MT (2012) A comparison of radiation exposure between diagnostic CTA and DSA examinations of cerebral and cervicocerebral vessels. Am J Neuroradiol 33:2038–2042

    Article  PubMed  Google Scholar 

  64. Nolz R, Wibmer A, Beitzke D, Gentzsch S, Willfort-Ehringer A, Lammer J, Thurnher M, Schoder M (2012) Carotid artery stenting and follow-up: value of 64-MSCT angiography as complementary imaging method to color-coded duplex sonography. Eur J Radiol 81:89–94

    Article  PubMed  Google Scholar 

  65. Cloud GC, Markus HS (2003) Diagnosis and management of vertebral artery stenosis. Q J Med 96:27–54

    Article  CAS  Google Scholar 

  66. Marquardt L, Kuker W, Chandratheva A, Geraghty O, Rothwell PM (2009) Incidence and prognosis of > or = 50% symptomatic vertebral or basilar artery stenosis: prospective population-based study. Brain 132(Pt 4):982–988

    PubMed  CAS  Google Scholar 

  67. Deipolyi AR, Hamberg LM, Gonzalez RG, Hirsch JA, Hunter GJ (2015) Diagnostic yield of emergency department arch-to-vertex CT angiography in patients with suspected acute stroke. Am J Neuroradiol 36(2):265–268

    Article  PubMed  CAS  Google Scholar 

  68. Fiebach JB, Schellinger PD, Jansen O et al (2002) CT and diffusion-weighted MR imaging in randomized order: diffusion-weighted imaging results in higher accuracy and lower interrater variability in the diagnosis of hyperacute ischemic stroke. Stroke 33:2206–2210

    Article  PubMed  CAS  Google Scholar 

  69. Mullins ME, Schaefer PW, Sorensen AG et al (2002) CT and conventional and diffusion-weighted MR imaging in acute stroke: study in 691 patients at presentation to the emergency department. Radiology 224:353–360

    Article  PubMed  Google Scholar 

  70. Gonzalez RG, Schaefer PW, Buonanno FS et al (1999) Diffusion-weighted MR imaging: diagnostic accuracy in patients imaged within 6 hours of stroke symptom onset. Radiology 210:155–162

    Article  PubMed  CAS  Google Scholar 

  71. Chemmanam T, Campbell BC, Christensen S et al (2010) Ischemic diffusion lesion reversal is uncommon and rarely alters perfusion–diffusion mismatch. Neurology 75:1040–1047

    Article  PubMed  CAS  Google Scholar 

  72. Oppenheim C, Stanescu R, Dormont D, Crozier S, Marro B, Samson Y, Rancurel G, Marsault C (2000) False-negative diffusion-weighted MR findings in acute ischemic stroke. AJNR Am J Neuroradiol 21:1434–1440

    PubMed  CAS  Google Scholar 

  73. Warach S, Kidwell CS (2004) The redefinition of TIA: the uses and limitations of DWI in acute ischemic cerebrovascular syndromes. Neurology 62:359–360

    Article  PubMed  Google Scholar 

  74. Yoo AJ, Verduzco LA, Schaefer PW et al (2009) MRI-based selection for intra-arterial stroke therapy: value of pretreatment diffusion-weighted imaging lesion volume in selecting patients with acute stroke who will benefit from early recanalization. Stroke 40:2046–2054

    Article  PubMed  PubMed Central  Google Scholar 

  75. Sanak D, Nosal V, Horak D et al (2006) Impact of diffusion-weighted MRI-measured initial cerebral infarction volume on clinical outcome in acute stroke patients with middle cerebral artery occlusion treated by thrombolysis. Neuroradiology 48:632–639

    Article  PubMed  Google Scholar 

  76. Sims JR, Gharai LR, Schaefer PW, Vangel M, Rosenthal ES, Lev MH, Schwamm LH (2009) ABC/2 for rapid clinical estimate of infarct, perfusion, and mismatch volumes. Neurology 72:2104–2110

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  77. Lansberg MG, Lee J, Christensen S et al (2011) RAPID automated patient selection for reperfusion therapy: a pooled analysis of the Echoplanar Imaging Thrombolytic Evaluation Trial (EPITHET) and the Diffusion and Perfusion Imaging Evaluation for Understanding Stroke Evolution (DEFUSE) Study. Stroke 42:1608–1614

    Article  PubMed  PubMed Central  Google Scholar 

  78. Puig J, Blasco G, Daunis-I-Estadella J et al (2013) Increased corticospinal tract fractional anisotropy can discriminate stroke onset within the first 4.5 hours. Stroke 44:1162–1165

    Article  PubMed  Google Scholar 

  79. Puig J, Blasco G, Daunis-I-Estadella J et al (2013) Decreased corticospinal tract fractional anisotropy predicts long-term motor outcome after stroke. Stroke 44:2016–2018

    Article  PubMed  Google Scholar 

  80. Perkins CJ, Kahya E, Roque CT, Roche PE, Newman GC (2001) Fluid-attenuated inversion recovery and diffusion- and perfusion-weighted MRI abnormalities in 117 consecutive patients with stroke symptoms. Stroke 32:2774–2781

    Article  PubMed  CAS  Google Scholar 

  81. Aoki J, Kimura K, Iguchi Y, Shibazaki K, Sakai K, Iwanaga T (2010) FLAIR can estimate the onset time in acute ischemic stroke patients. J Neurol Sci 293:39–44

    Article  PubMed  Google Scholar 

  82. Thomalla G, Rossbach P, Rosenkranz M, Siemonsen S, Krützelmann A, Fiehler J, Gerloff C (2009) Negative fluid-attenuated inversion recovery imaging identifies acute ischemic stroke at 3 hours or less. Ann Neurol 65:724–732

    Article  PubMed  Google Scholar 

  83. Thomalla G, Fiebach JB, Ostergaard L, WAKE-UP investigators et al (2014) A multicenter, randomized, double-blind, placebo-controlled trial to test efficacy and safety of magnetic resonance imaging-based thrombolysis in wake-up stroke (WAKE-UP). Int J Stroke 9:829–836

    Article  PubMed  Google Scholar 

  84. Wu O, Latour LL, Song SS, Thornell B, Davis L, Furie KL, Warach S, Schwamm LH (2012) MR WITNESS: a phase IIA safety study of intravenous thrombolysis with alteplase in MRI-selected patients. In: International stroke conference

  85. Sanossian N, Saver JL, Alger JR, Kim D, Duckwiler GR, Jahan R, Vinuela F, Ovbiagele B, Liebeskind DS (2009) Angiography reveals that fluid-attenuated inversion recovery vascular hyperintensities are due to slow flow, not thrombus. AJNR Am J Neuroradiol 30:564–568

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  86. Cheng B, Ebinger M, Kufner A et al (2012) Hyperintense vessels on acute stroke fluid-attenuated inversion recovery imaging: associations with clinical and other MRI findings. Stroke 43:2957–2961

    Article  PubMed  PubMed Central  Google Scholar 

  87. Gawlitza M, Gragert J, Quäschling U, Hoffmann KT (2014) FLAIR-hyperintense vessel sign, diffusion–perfusion mismatch and infarct growth in acute ischemic stroke without vascular recanalisation therapy. J Neuroradiol 41:227–233

    Article  PubMed  Google Scholar 

  88. Girot M, Gauvrit JY, Cordonnier C, Pruvo JP, Verdelho A, Leys D, Leclerc X (2007) Prognostic value of hyperintense vessel signals on fluid-attenuated inversion recovery sequences in acute cerebral ischemia. Eur Neurol 57:75–79

    Article  PubMed  Google Scholar 

  89. Kim SJ, Ha YS, Ryoo S, Noh HJ, Ha SY, Bang OY, Kim GM, Chung CS, Lee KH (2012) Sulcal effacement on fluid attenuation inversion recovery magnetic resonance imaging in hyperacute stroke: association with collateral flow and clinical outcomes. Stroke 43:386–392

    Article  PubMed  Google Scholar 

  90. Schellinger PD, Chalela JA, Kang DW, Latour LL, Warach S (2005) Diagnostic and prognostic value of early MR Imaging vessel signs in hyperacute stroke patients imaged < 3 hours and treated with recombinant tissue plasminogen activator. AJNR Am J Neuroradiol 26:618–624

    PubMed  Google Scholar 

  91. Haacke EM, Xu Y, Cheng YC, Reichenbach JR (2004) Susceptibility weighted imaging (SWI). Magn Reson Med 52:612–618

    Article  PubMed  Google Scholar 

  92. Santhosh K, Kesavadas C, Thomas B, Gupta AK, Thamburaj K, Kapilamoorthy TR (2009) Susceptibility weighted imaging: a new tool in magnetic resonance imaging of stroke. Clin Radiol 64:74–83

    Article  PubMed  CAS  Google Scholar 

  93. Rovira A, Orellana P, Alvarez-Sabin Arenillas JF, Aymerich X, Grive E, Molina C, Rovira-Gols A (2004) Hyperacute ischemic stroke: middle cerebral artery susceptibility sign at echo-planar gradient-echo MR imaging. Radiology 232:466–473

    Article  PubMed  Google Scholar 

  94. Cho KH, Kim JS, Kwon SU, Cho AH, Kang DW (2005) Significance of susceptibility vessel sign on T2*-weighted gradient echo imaging for identification of stroke subtypes. Stroke 36:2379–2383

    Article  PubMed  Google Scholar 

  95. Hermier M, Nighoghossian N (2004) Contribution of susceptibility-weighted imaging to acute stroke assessment. Stroke 35:1989–1994

    Article  PubMed  Google Scholar 

  96. Kao HW, Tsai FY, Hasso AN (2012) Predicting stroke evolution: comparison of susceptibility-weighted MR imaging with MR perfusion. Eur Radiol 22:1397–1403

    Article  PubMed  Google Scholar 

  97. Luo S, Yang L, Wang L (2014) Comparison of susceptibility-weighted and perfusion-weighted magnetic resonance imaging in the detection of penumbra in acute ischemic stroke. J Neuroradiol 42:255–260

  98. Alvarez-Linera J, Benito-Leon J, Escribano J, Campollo J, Gesto R (2003) Prospective evaluation of carotid artery stenosis: elliptic centric contrast-enhanced MR angiography and spiral CT angiography compared with digital subtraction angiography. Am J Neuroradiol 24:1012–1019

    PubMed  Google Scholar 

  99. Jaff MR, Goldmakher GV, Lev MH, Romero JM (2008) Imaging of the carotid arteries: the role of duplex ultrasonography, magnetic resonance arteriography, and computerized tomographic arteriography. Vasc Med 13:281–292

    Article  PubMed  Google Scholar 

  100. Yu S, Yan L, Yao Y et al (2012) Noncontrast dynamic MRA in intracranial arteriovenous malformation (AVM), comparison with time of flight (TOF) and digital subtraction angiography (DSA). Magn Reson Imaging 30:869–877

    Article  PubMed  PubMed Central  Google Scholar 

  101. Liu Q, Huang J, Degnan AJ, Chen S, Gillard JH, Teng Z, Lu J (2013) Comparison of high-resolution MRI with CT angiography and digital subtraction angiography for the evaluation of middle cerebral artery atherosclerotic steno-occlusive disease. Int J Cardiovasc Imaging 29:1491–1498

    Article  PubMed  Google Scholar 

  102. Symon L (2007) The ischaemic penumbra: the beginning. In: Donnan GA, Baron JC, Davis SM, Sharp FR (eds) The ischemic penumbra. Informa Healthcare, New York, pp 1–6

    Google Scholar 

  103. Astrup J, Siesjo BK, Symon L (1981) Thresholds in cerebral ischemia—the ischemic penumbra. Stroke 12:723–725

    Article  PubMed  CAS  Google Scholar 

  104. Donnan GA, Baron JC, Davis SM, Sharp FR (eds) (2007) The ischaemic penumbra. New York, Informa Healthcare, pp 7–20

    Google Scholar 

  105. Konstas AA, Goldmakher GV, Lee TY, Lev MH (2009) Theoretic basis and technical implementation of CT perfusion in acute ischemic stroke, part 1: Theoretic basis. Am J Neuroradiol 30:662–668

    Article  PubMed  CAS  Google Scholar 

  106. Mouridsen K, Christensen S, Gyldensted L, Ostergaard L (2006) Automated selection of arterial input function using cluster analysis. Magn Reson Med 55:524–531

    Article  PubMed  Google Scholar 

  107. Grandin CB (2003) Assessment of brain perfusion with MRI: methodology and application to acute stroke. Neuroradiology 45:755–766

    Article  PubMed  CAS  Google Scholar 

  108. Wintermark M, Sesay M, Barbier E et al (2005) Comparative overview of brain perfusion imaging techniques. Stroke 36:e83–e99

    Article  PubMed  Google Scholar 

  109. Yoo AJ, Pulli B, Gonzalez RG (2011) Imaging-based treatment selection for intravenous and intra-arterial stroke therapies: a comprehensive review. Expert Rev Cardiovasc Ther 9:857–876

    Article  PubMed  PubMed Central  Google Scholar 

  110. Konstas AA, Wintermark M, Lev MH (2011) CT perfusion imaging in acute stroke. Neuroimaging Clin N Am 21:215–238

    Article  PubMed  Google Scholar 

  111. Dani KA, Thomas RG, Chappell FM, Shuler K, MacLeod MJ, Muir KW, Wardlaw JM (2011) Computed tomography and magnetic resonance perfusion imaging in ischemic stroke: definitions and thresholds. Ann Neurol 70:384–401

    Article  PubMed  Google Scholar 

  112. Kamalian S, Kamalian S, Maas MB et al (2011) CT cerebral blood flow maps optimally correlate with admission diffusion-weighted imaging in acute stroke but thresholds vary by postprocessing platform. Stroke 42:1923–1928

    Article  PubMed  PubMed Central  Google Scholar 

  113. Schaefer PW, Souza L, Kamalian S, Hirsch JA, Yoo AJ, Kamalian S, Gonzalez RG, Lev MH (2015) Stroke 46:419–424

    Article  PubMed  PubMed Central  Google Scholar 

  114. Campbell BC, Christensen S, Levi CR, Desmond PM, Donnan GA, David SM, Parsons MW (2011) Cerebral blood flow is the optimal CT perfusion parameter for assessing infarct core. Stroke 42:3435–3440

    Article  PubMed  Google Scholar 

  115. Olivot JM, Mlynash M, Thijs VN, Kemp S, Lansberg MG, Wechsler L, Bammer R, Marks MP, Albers GW (2009) Optimal Tmax threshold for predicting penumbral tissue in acute stroke. Stroke 40:469–475

    Article  PubMed  PubMed Central  Google Scholar 

  116. Mui K, Yoo AJ, Verduzco L, Copen WA, Hirsch JA, Gonzalez RG, Schaefer PW (2011) Cerebral blood flow thresholds for tissue infarction in patients with acute ischemic stroke treated with intra-arterial revascularization therapy depend on timing of reperfusion. AJNR Am J Neuroradiol 32:846–851

    Article  PubMed  CAS  Google Scholar 

  117. Lassen NA (1985) Normal average value of cerebral blood flow in younger adults is 50 ml/100 g/min. J Cereb Blood Flow Metab 5:347–349

    Article  PubMed  CAS  Google Scholar 

  118. Frackowiak RS, Lenzi GL, Jones T, Heather JD (1980) Quantitative measurement of regional cerebral blood flow and oxygen metabolism in man using 15O and positron emission tomography: theory, procedure, and normal values. J Comput Assist Tomogr 4:727–736

    Article  PubMed  CAS  Google Scholar 

  119. Mishra NK, Albers GW, Davis SM, Donnan GA, Furlan AJ, Hacke W, Lees KR (2010) Mismatch based delayed thrombolysis: a meta-analysis. Stroke 41:e25–e33

    Article  PubMed  Google Scholar 

  120. Lansberg MG, Straka M, Kemp S et al (2012) MRI profile and response to endovascular reperfusion after stroke (DEFUSE 2): a prospective cohort study. Lancet Neurol 11:860–867

    Article  PubMed  PubMed Central  Google Scholar 

  121. Hillis AE, Ulatowski JA, Barker PB, Torbey M, Ziai W, Beauchamp NJ, Oh S, Wityk RJ (2003) A pilot randomized trial of induced blood pressure elevation: effects on function and focal perfusion in acute and subacute stroke. Cerebrovasc Dis 16:236–346

    Article  PubMed  CAS  Google Scholar 

  122. Aviv RI, d’Esterre CD, Murphy BD et al (2009) Hemorrhagic transformation of ischemic stroke: prediction with CT perfusion. Radiology 250:867–877

    Article  PubMed  Google Scholar 

  123. Souza LC, Payabvash S, Wang Y et al (2012) Admission CT perfusion is an independent predictor of hemorrhagic transformation in acute stroke with similar accuracy to DWI. Cerebrovasc Dis 33:8–15

    Article  PubMed  PubMed Central  Google Scholar 

  124. Payabvash S, Kamalian S, Fung S et al (2010) Predicting language improvement in acute stroke patients presenting with aphasia: a multivariate logistic model using location-weighted atlas-based anlaysis of admission CT perfusion scans. Am J Neuroradiol 31:1661–1668

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  125. Payabvash S, Souza LC, Kamalian S et al (2012) Location-weighted CTP analysis predicts early motor improvement in stroke: a preliminary study. Neurology 8:1853–1859

    Article  Google Scholar 

  126. Hopyan J, Ciarallo A, Dowlatshahi D et al (2010) Certainty of stroke diagnosis: incremental benefit with CT perfusion over noncontrast CT and CT angiography. Radiology 255:142–153

    Article  PubMed  Google Scholar 

  127. Gonzalez RG, Copen WA, Schaefer PW et al (2013) The Massachusetts General Hospital acute stroke imaging algorithm: an experience and evidence based approach. J Neurointerv Surg 5:i7–i12

    Article  PubMed  PubMed Central  Google Scholar 

  128. Powers WJ, Derdeyn CP, Biller J et al (2015) 2015 AHA/ASA focused update of the 2013 guidelines for the early management of patients with acute ischemic stroke regarding endovascular treatment: a guideline for healthcare professionals from the American Heart Association/American Stroke Association. Stroke. doi:10.1161/STR.0000000000000074

  129. Wintermark M, Sanelli PC, Albers GW et al (2013) Imaging recommendations for acute stroke and transient ischemic attack patients: a joint statement by the American Society of Neuroradiology, the American College of Radiology, and the Society of Neurointerventional Surgery. Am J Neuroradiol 34:E117–E127

    Article  PubMed  CAS  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joseph Yeen Young.

Ethics declarations

Conflict of interest

None.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Young, J.Y., Schaefer, P.W. Acute ischemic stroke imaging: a practical approach for diagnosis and triage. Int J Cardiovasc Imaging 32, 19–33 (2016). https://doi.org/10.1007/s10554-015-0757-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10554-015-0757-0

Keywords

Navigation