Skip to main content
Log in

A novel method for non-invasive plaque morphology analysis by coronary computed tomography angiography

  • Original Paper
  • Published:
The International Journal of Cardiovascular Imaging Aims and scope Submit manuscript

Abstract

Coronary computed tomography angiography (CCTA) plaque morphology based on conventional Hounsfield units relies on absolute CT numbers is influenced by imaging and anatomical variables. The project describes and tests a novel alternative method, termed the “labeling method”, which uses relative CT numbers and 3-dimensional plaque structure. Using virtual histology intravascular ultrasound (VH-IVUS) as the reference standard, this study compares the labeling method to a conventional CT-number based method to determine coronary plaque morphology. Thirty-seven high-risk, non-calcified atherosclerotic coronary lesions were prospectively evaluated in 33 consecutive patients who underwent CCTA followed by VH-IVUS (mean interval 8.6 ± 13.3 days). CCTA-derived vessel and minimum lumen areas were compared to VH-IVUS measures. Fibrotic and necrotic core areas were calculated by both the labeling method to the CT-number based method; both were tested for agreement with reference standard VH-IVUS. Inter- and intra-observer correlations were assessed. CCTA significantly underestimated minimum lumen area when compared to VH-IVUS (mean difference −1.4 ± 0.9 mm2, p < 0.0001). Necrotic core and fibrous areas quantified using the labeling method demonstrated superior correlation with VH-IVUS compared to those quantified using the CT-number based method, Pearson’s r = 0.75 versus 0.42 and r = 0.80 and 0.59, respectively. Compared to VH-IVUS, limits of agreement for the labeling method-derived necrotic core (−2.0 to 2.5 mm2) and fibrous areas (0.6–8.0 mm2) were more narrow than those determined using the CT-number based method (−3.7 to 7.3 and −4.0 to 8.9 mm2, respectively). Inter- and intraobserver correlations were excellent for all CCTA derived measures (r = 0.85–0.98). A novel CCTA-based labeling method offers an alternative to conventional CT-number based analyses for plaque morphology. The labeling method demonstrates superior correlation to VH-IVUS for measures of fibrotic and necrotic core areas within non-calcified coronary atherosclerotic plaques.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Narula J, Nakano M, Virmani R, Kolodgie FD, Petersen R, Newcomb R, Malik S, Fuster V, Finn AV (2013) Histopathologic characteristics of atherosclerotic coronary disease and implications of the findings for the invasive and noninvasive detection of vulnerable plaques. J Am Coll Cardiol 61:1041–1051

    Article  PubMed  PubMed Central  Google Scholar 

  2. Narula J, Finn AV, Demaria AN (2005) Picking plaques that pop. J Am Coll Cardiol 45:1970–1973

    Article  PubMed  Google Scholar 

  3. Stone GW, Maehara A, Lansky AJ, de Bruyne B, Cristea E, Mintz GS, Mehran R, McPherson J, Farhat N, Marso SP, Parise H, Templin B, White R, Zhang Z, Serruys PW, PROSPECT Investigators (2011) A prospective natural-history study of coronary atherosclerosis. N Engl J Med 364:226–235

    Article  PubMed  CAS  Google Scholar 

  4. Motoyama S, Sarai M, Harigaya H, Anno H, Inoue K, Hara T, Naruse H, Ishii J, Hishida H, Wong ND, Virmani R, Kondo T, Ozaki Y, Narula J (2009) Computed tomographic angiography characteristics of atherosclerotic plaques subsequently resulting in acute coronary syndrome. J Am Coll Cardiol 54:49–57

    Article  PubMed  Google Scholar 

  5. Kitagawa T, Yamamoto H, Ohhashi N, Okimoto T, Horiguchi J, Hirai N, Ito K, Kohno N (2007) Comprehensive evaluation of noncalcified coronary plaque characteristics detected using 64-slice computed tomography in patients with proven or suspected coronary artery disease. Am Heart J 154:1191–1198

    Article  PubMed  Google Scholar 

  6. Kashiwagi M, Tanaka A, Kitabata H, Tsujioka H, Kataiwa H, Komukai K, Tanimoto T, Takemoto K, Takarada S, Kubo T, Hirata K, Nakamura N, Mizukoshi M, Imanishi T, Akasaka T (2009) Feasibility of noninvasive assessment of thin-cap fibroatheroma by multidetector computed tomography. JACC Cardiovasc Imaging 2:1412–1419

    Article  PubMed  Google Scholar 

  7. Ito T, Terashima M, Kaneda H, Nasu K, Matsuo H, Ehara M, Kinoshita Y, Kimura M, Tanaka N, Habara M, Katoh O, Suzuki T (2011) Comparison of in vivo assessment of vulnerable plaque by 64-slice multislice computed tomography versus optical coherence tomography. Am J Cardiol 107:1270–1277

    Article  PubMed  Google Scholar 

  8. Rybicki FJ, Otero HJ, Steigner M, Vorobiof G, Nallamshetty L, Mitsouras D, Ersoy H, Mather RT, Judy PF, Cai T, Coyner K, Schultz K, Whitmore AG, Di Carli MF (2008) Initial evaluation of coronary images from 320-detector row computed tomography. Int J Cardiovasc Imaging 24:535–546

    Article  PubMed  Google Scholar 

  9. Steigner MT, Mitsouras D, Whitmore AG, Otero HJ, Wang C, Buckley O, Levit NA, Hussain AZ, Cai T, Mather RT, Smedby O, DiCarli MF, Rybicki F (2010) Iodinated contrast opacification gradients in normal coronary arteries imaged with prospectively ECG-gated single heart beat 320-detector row computed tomography. Circ Cardiovasc Imaging 3:179–186

    Article  PubMed  PubMed Central  Google Scholar 

  10. Cademartiri F, Mollet NR, Runza G, Bruining N, Hamers R, Somers P, Knaapen M, Verheye S, Midiri M, Krestin GP, de Feyter PJ (2005) Influence of intracoronary attenuation on coronary plaque measurements using multislice computed tomography: observations in an ex vivo model of coronary computed tomography angiography. Eur Radiol 15:1426–1431

    Article  PubMed  Google Scholar 

  11. Kristanto W, van Ooijen PM, Greuter MJ, Groen JM, Vliegenthart R, Oudkerk M (2013) Non-calcified coronary atherosclerotic plaque visualization on CT: effects of contrast-enhancement and lipid-content fractions. Int J Cardiovasc Imaging 29:1137–1148

    Article  PubMed  Google Scholar 

  12. Kristanto W, van Ooijen PM, Jansen-van der Weide MC, Vliegenthart R, Oudkerk M (2013) A meta analysis and hierarchical classification of HU-based atherosclerotic plaque characterization criteria. PLoS One 8:e73460

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  13. Morita H, Fujimoto S, Kondo T, Arai T, Sekine T, Matsutani H, Sano T, Kondo M, Kodama T, Takase S, Narula J (2012) Prevalence of computed tomographic angiography-verified high-risk plaques and significant luminal stenosis in patients with zero coronary calcium score. Int J Cardiol 158:272–278

    Article  PubMed  Google Scholar 

  14. Fujimoto S, Kondo T, Kodama T, Orihara T, Sugiyama J, Kondo M, Endo A, Fukazawa H, Nagaoka H, Oida A, Ikeda T, Yamazaki J, Takase S, Narula J (2012) Coronary CT angiography-based coronary risk stratification in subjects presenting with no or atypical symptom. Circ J 76:2419–2425

    Article  PubMed  Google Scholar 

  15. Steigner ML, Otero HJ, Cai T, Mitsouras D, Nallamshetty L, Whitmore AG, Ersoy H, Levit NA, Di Carli MF, Rybicki FJ (2009) Narrowing the phase window width in prospectively ECG-gated single heart beat 320-detector row coronary CT angiography. Int J Cardiovasc Imaging 25:85–90

    Article  PubMed  Google Scholar 

  16. Fujimoto S, Matsutani H, Kondo T, Sano T, Kumamaru K, Takase T, Rybicki FJ (2013) Image quality and radiation dose stratified by patient heart rate for 64- and 320-detector row coronary CT angiography. Am J Roentgenol 200:765–770

    Article  Google Scholar 

  17. Inoue K, Motoyama S, Sarai M, Sato T, Harigaya H, Hara T, Sanda Y, Anno H, Kondo T, Wong ND, Narula J, Ozaki Y (2010) Serial coronary CT angiography-verified changes in plaque characteristics as an end point: evaluation of effect of statin intervention. JACC Cardiovasc Imaging 3:691–698

    Article  PubMed  Google Scholar 

  18. Nair A, Kuban BD, Tuzcu EM, Schoenhagen P, Nissen SE, Vince DG (2002) Coronary plaque classification with intravascular ultrasound radiofrequency data analysis. Circulation 106:2200–2206

    Article  PubMed  Google Scholar 

  19. Nasu K, Tsuchikane E, Katoh O, Vince DG, Virmani R, Surmely JF, Murata A, Takeda Y, Ito T, Ehara M, Matsubara T, Terashima M, Suzuki T (2006) Accuracy of in vivo coronary plaque morphology assessment: a validation study of in vivo virtual histology compared with in vitro histopathology. J Am Coll Cardiol 47:2405–2412

    Article  PubMed  Google Scholar 

  20. Schroeder S, Kopp AF, Baumbach A, Meisner C, Kuettner A, Georg C, Ohnesorge B, Herdeg C, Claussen CD, Karsch KR (2001) Noninvasive detection and evaluation of atherosclerotic coronary plaques with multislice computed tomography. J Am Coll Caridol 37:1430–1435

    Article  CAS  Google Scholar 

  21. Motoyama S, Kondo T, Anno H, Sugiura A, Ito Y, Mori K, Ishii J, Sato T, Inoue K, Sarai M, Hishida H, Narula J (2007) Atherosclerotic plaque characterization by 0.5-mm-slice multislice computed tomographic imaging. Circ J 71:363–366

    Article  PubMed  Google Scholar 

  22. Komatsu S, Hirayama A, Omori Y, Ueda Y, Mizote I, Fujisawa Y, Kiyomoto M (2005) Detection of coronary plaque by computed tomography with a novel plaque analysis system, ‘Plaque Map’, and comparison with intravascular ultrasound and angioscopy. Circ J 69:72–77

    Article  PubMed  Google Scholar 

  23. Brodoefel H, Reimann A, Heuschmid M, Tsiflikas I, Kopp AF, Schroeder S, Claussen CD, Clouse ME, Burgstahler C (2008) Characterization of coronary atherosclerosis by dual-source computed tomography and HU-based color mapping: a pilot study. Eur Radiol 18:2466–2474

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  24. Voros S, Rinehart S, Qian Z, Vazquez G, Anderson H, Murrieta L, Wilmer C, Carlson H, Taylor K, Ballard W, Karmpaliotis D, Kalynych A, Brown C 3rd (2011) Prospective validation of standardized, 3-dimensional, quantitative coronary computed tomographic plaque measurements using radiofrequency backscatter intravascular ultrasound as reference standard in intermediate coronary arterial lesions: results from the ATLANTA (assessment of tissue characteristics, lesion morphology, and hemodynamics by angiography with fractional flow reserve, intravascular ultrasound and virtual histology, and noninvasive computed tomography in atherosclerotic plaques) I study. JACC Cardiovasc Interv 4:198–208

    Article  PubMed  Google Scholar 

  25. Sun J, Zhang Z, Lu B, Yu W, Yang Y, Zhou Y, Wang Y, Fan Z (2008) Identification and quantification of coronary atherosclerotic plaques: a comparison of 64-MDCT and intravascular ultrasound. Am J Roentgenol 194:748–754

    Article  Google Scholar 

  26. Yang WI, Hur J, Ko YG, Choi BW, Kim JS, Choi D, Ha JW, Hong MK, Jang Y, Chung N, Shim WH, Cho SY (2010) Assessment of tissue characteristics of noncalcified coronary plaques by 64-slice computed tomography in comparison with integrated backscatter intravascular ultrasound. Coron Artery Dis 21:168–174

    Article  PubMed  Google Scholar 

  27. Obaid DR, Calvert PA, Gopalan P, Parker RA, Hoole SP, West NE, Goddard M, Rudd JH, Bennett MR (2013) Atherosclerotic plaque composition and classification identified by coronary computed tomography: assessment of computed tomography-generated plaque maps compared with virtual histology intravascular ultrasound and histology. Circ Cardiovasc Imaging 6:655–664

    Article  PubMed  Google Scholar 

  28. Pohle K, Achenbach S, Macneill B, Ropers D, Ferencik M, Moselewski F, Hoffmann U, Brady TJ, Jang IK, Daniel WG (2007) Characterization of non-calcified coronary atherosclerotic plaque by multi-detector row CT: comparison to IVUS. Atherosclerosis 190:174–180

    Article  PubMed  CAS  Google Scholar 

  29. Leber AW, Knez A, von Ziegler F, Becker A, Nikolaou K, Paul S, Wintersperger B, Reiser M, Becker CR, Steinbeck G, Boekstegers P (2005) Quantification of obstructive and nonobstructive coronary lesions by 64-slice computed tomography: a comparative study with quantitative coronary angiography and intravascular ultrasound. J Am Coll Cardiol 46:147–154

    Article  PubMed  Google Scholar 

  30. Joshi SB, Okabe T, Roswell RO, Weissman G, Lopez CF, Lindsay J, Pichard AD, Weissman NJ, Waksman R, Weigold WG (2009) Accuracy of computed tomographic angiography for stenosis quantification using quantitative coronary angiography or intravascular ultrasound as the gold standard. Am J Cardiol 104:1047–1051

    Article  PubMed  Google Scholar 

  31. Li Y, Zhang J, Lu Z, Pan J (2012) Discrepant findings of computed tomography quantification of minimal lumen area of coronary artery stenosis: correlation with intravascular ultrasound. Eur J Radiol 81:3270–3275

    Article  PubMed  Google Scholar 

  32. Boogers MJ, Broersen A, van Velzen JE, de Graaf FR, El-Naggar HM, Kitslaar PH, Dijkstra J, Delgado V, Boersma E, de Roos A, Schuijf JD, Schalij MJ, Reiber JH, Bax JJ, Jukema JW (2012) Automated quantification of coronary plaque with computed tomography: comparison with intravascular ultrasound using a dedicated registration algorithm for fusion-based quantification. Eur Heart J 33:1007–1016

    Article  PubMed  Google Scholar 

  33. Naghavi M, Libby P, Falk E, Casscells SW, Litovsky S, Rumberger J, Badimon JJ, Stefanadis C, Moreno P, Pasterkamp G, Fayad Z, Stone PH, Waxman S, Raggi P, Madjid M, Zarrabi A, Burke A, Yuan C, Fitzgerald PJ, Siscovick DS, de Korte CL, Aikawa M, Airaksinen KEJ, Assmann G, Becker CR, Chesebro JH, Farb A, Galis ZS, Jackson C, Jang IK, Koenig W, Lodder RA, March K, Demirovic J, Navab M, Priori SG, Rekhter MD, Bahr R, Grundy SM, Mehran R, Colombo A, Boerwinkle E, Ballantyne C, Insull W Jr, Schwartz RS, Vogel R, Serruys PW, Hansson GK, Faxon DP, Kaul S, Drexler H, Greenland P, Muller JE, Virmani R, Ridker PM, Zipes DP, Shah PK, Willerson JT (2004) From vulnerable plaque to vulnerable patient: a call for new definitions and risk assessment strategies: part I. Circulation 108:1664–1672

    Article  Google Scholar 

  34. Thim T, Hagensen MK, Wallace-Bradley D, Granada JF, Kaluza GL, Drouet L, Paaske WP, Bøtker HE, Falk E (2010) Unreliable assessment of necrotic core by virtual histology intravascular ultrasound in porcine coronary artery disease. Circ Cardiovasc Imaging 3:384–391

    Article  PubMed  Google Scholar 

Download references

Conflict of interest

Dr. Rybicki has a research agreement with Toshiba Medical Systems Corporation that is unrelated to this project. Ms. Fujisawa is an employee of Toshiba Medical Systems Corporation. All data was entirely under the control of the corresponding author. The role of Ms. Fujisawa included the phantom study and technical support for the CT data analyses. No other relationship with industry exists.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shinichiro Fujimoto.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 4967 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fujimoto, S., Kondo, T., Kodama, T. et al. A novel method for non-invasive plaque morphology analysis by coronary computed tomography angiography. Int J Cardiovasc Imaging 30, 1373–1382 (2014). https://doi.org/10.1007/s10554-014-0461-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10554-014-0461-5

Keywords

Navigation