Skip to main content
Log in

Imaging sequences in cardiovascular magnetic resonance: current role, evolving applications, and technical challenges

  • Published:
The International Journal of Cardiovascular Imaging Aims and scope Submit manuscript

Abstract

Cardiovascular magnetic resonance (CMR) has been established as a powerful and comprehensive imaging modality for studying the cardiovascular (CV) system. Shortly after invention of magnetic resonance imaging, CMR applications and developments started to emerge, and they continue to evolve up to the present day. CMR has the advantages of high spatial resolution, enhanced tissue contrast, superior safety profile, and the plethora of physiological parameters that can be obtained. In the near future, CMR is expected to be the gold standard modality for comprehensive CV imaging. Specifically, CMR imaging sequences are increasingly growing in parallel with advancements in scanner hardware. Not only do CMR imaging sequences provide detailed anatomical information, but they also provide functional, perfusion, viability, hemodynamic, and metabolic information about the CV system. In this article, an up-to-date review of different CMR imaging sequences is presented. Each sequence is described along with typical imaging parameters, necessary image processing steps, derived CV parameters, and potential applications. The article then addresses advanced CMR imaging techniques and emerging applications. Finally, the challenges facing CMR imaging are discussed along with its expected future role.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Ho V, Reddy GP (2010) Cardiovascular imaging. Saunders, St. Louis

    Google Scholar 

  2. Manning WJ (2006) Cardiovascular magnetic resonance imaging. Clin Cardiol 29(9 Suppl 1):I34–I48

    PubMed  Google Scholar 

  3. Lima JA, Desai MY (2004) Cardiovascular magnetic resonance imaging: current and emerging applications. J Am Coll Cardiol 44(6):1164–1171

    Article  PubMed  Google Scholar 

  4. Pohost GM, Biederman RW, Doyle M (2000) Cardiovascular magnetic resonance imaging and spectroscopy in the new millennium. Curr Probl Cardiol 25(8):525–620

    Article  PubMed  CAS  Google Scholar 

  5. Pennell DJ, Sechtem UP, Higgins CB, Manning WJ, Pohost GM, Rademakers FE et al (2004) Clinical indications for cardiovascular magnetic resonance (CMR): consensus panel report. J Cardiovasc Magn Reson 6(4):727–765

    Article  PubMed  Google Scholar 

  6. Bogaert J, Dymarkowski S, Taylor A, Baert A (2005) Clinical cardiac MRI. Springer, New York

    Book  Google Scholar 

  7. Kwong RY (2007) Cardiovascular Magnetic Resonance Imaging Totowa. Humana Press, NJ

    Google Scholar 

  8. Manning WJ, Pennell DJ (2010) Cardiovascular magnetic resonance. Churchill Livingstone, London

    Google Scholar 

  9. Lee VS (2005) Cardiovascular MR Imaging: physical principles to practical protocols. Lippincott Williams and Wilkins, Philadelphia

  10. Higgins C, de Roos A (2002) Cardiovascular MRI and MRA. Lippincott Williams and Wilkins, New York

    Google Scholar 

  11. Fischer SE, Wickline SA, Lorenz CH (1999) Novel real-time R-wave detection algorithm based on the vectorcardiogram for accurate gated magnetic resonance acquisitions. Magn Reson Med 42(2):361–370

    Article  PubMed  CAS  Google Scholar 

  12. Larson AC, White RD, Laub G, McVeigh ER, Li D, Simonetti OP (2004) Self-gated cardiac cine MRI. Magn Reson Med 51(1):93–102

    Article  PubMed  Google Scholar 

  13. Bernstein MA, King KF, Zhou XJ (2004) Handbook of MRI pulse sequences. Elsevier, Burlington

    Google Scholar 

  14. Dulce MC, Mostbeck GH, Friese KK, Caputo GR, Higgins CB (1993) Quantification of the left ventricular volumes and function with cine MR imaging: comparison of geometric models with three-dimensional data. Radiology 188(2):371–376

    PubMed  CAS  Google Scholar 

  15. Lima JA, Jeremy R, Guier W, Bouton S, Zerhouni EA, McVeigh E et al (1993) Accurate systolic wall thickening by nuclear magnetic resonance imaging with tissue tagging: correlation with sonomicrometers in normal and ischemic myocardium. J Am Coll Cardiol 21(7):1741–1751

    Article  PubMed  CAS  Google Scholar 

  16. Masci PG, Dymarkowski S, Bogaert J (2008) Valvular heart disease: what does cardiovascular MRI add? Eur Radiol 18(2):197–208

    Article  PubMed  Google Scholar 

  17. White JA, Patel MR (2007) The role of cardiovascular MRI in heart failure and the cardiomyopathies. Magn Reson Imaging Clin N Am 15(4):541–564, vi

    Google Scholar 

  18. Spuentrup E, Mahnken AH, Kuhl HP, Krombach GA, Botnar RM, Wall A et al (2003) Fast interactive real-time magnetic resonance imaging of cardiac masses using spiral gradient echo and radial steady-state free precession sequences. Investig Radiol 38(5):288–292

    Google Scholar 

  19. Iwaoka H, Hirata T, Matsuura H (1987) Optimal pulse sequences for magnetic resonance imaging-computing accurate t1, t2, and proton density images. IEEE Trans Med Imaging 6(4):360–369

    Article  PubMed  CAS  Google Scholar 

  20. Brown JJ, Barakos JA, Higgins CB (1989) Magnetic resonance imaging of cardiac and paracardiac masses. J Thorac Imaging 4(2):58–64

    Article  PubMed  CAS  Google Scholar 

  21. Saam T, Hatsukami TS, Takaya N, Chu B, Underhill H, Kerwin WS et al (2007) The vulnerable, or high-risk, atherosclerotic plaque: noninvasive MR imaging for characterization and assessment. Radiology 244(1):64–77

    Article  PubMed  Google Scholar 

  22. Sosnovik DE, Wang R, Dai G, Reese TG, Wedeen VJ (2009) Diffusion MR tractography of the heart. J Cardiovasc Magn Reson 11:47

    Article  PubMed  Google Scholar 

  23. Nagel E, Lorenz C, Baer F, Hundley WG, Wilke N, Neubauer S et al (2001) Stress cardiovascular magnetic resonance: consensus panel report. J Cardiovasc Magn Reson 3(3):267–281

    Article  PubMed  CAS  Google Scholar 

  24. Al-Saadi N, Nagel E, Gross M, Bornstedt A, Schnackenburg B, Klein C et al (2000) Noninvasive detection of myocardial ischemia from perfusion reserve based on cardiovascular magnetic resonance. Circulation 101(12):1379–1383

    Article  PubMed  CAS  Google Scholar 

  25. Nagel E, al-Saadi N, Fleck E (2000) Cardiovascular magnetic resonance: myocardial perfusion. Herz 25(4):409–416

    Article  PubMed  CAS  Google Scholar 

  26. Plein S, Radjenovic A, Ridgway JP, Barmby D, Greenwood JP, Ball SG et al (2005) Coronary artery disease: myocardial perfusion MR imaging with sensitivity encoding versus conventional angiography. Radiology 235(2):423–430

    Article  PubMed  Google Scholar 

  27. Abdel-Aty H, Cocker M, Meek C, Tyberg JV, Friedrich MG (2009) Edema as a very early marker for acute myocardial ischemia: a cardiovascular magnetic resonance study. J Am Coll Cardiol 53(14):1194–1201

    Article  PubMed  CAS  Google Scholar 

  28. Mollet NR, Dymarkowski S, Volders W, Wathiong J, Herbots L, Rademakers FE et al (2002) Visualization of ventricular thrombi with contrast-enhanced magnetic resonance imaging in patients with ischemic heart disease. Circulation 106(23):2873–2876

    Article  PubMed  Google Scholar 

  29. Verani MS (1993) Pharmacologic stress myocardial perfusion imaging. Curr Probl Cardiol 18(8):481–525

    Article  PubMed  CAS  Google Scholar 

  30. Kim RJ, Shah DJ, Judd RM (2003) How we perform delayed enhancement imaging. Journal of cardiovascular magnetic resonance : official journal of the Society for Cardiovascular Magnetic Resonance 5(3):505–514

    Article  Google Scholar 

  31. Nacif MS, Turkbey EB, Gai N, Nazarian S, van der Geest RJ, Noureldin RA et al (2011) Myocardial T1 mapping with MRI: comparison of look-locker and MOLLI sequences. J Magn Reson Imaging 34(6):1367–1373

    Article  PubMed  Google Scholar 

  32. Kim RJ, Wu E, Rafael A, Chen EL, Parker MA, Simonetti O et al (2000) The use of contrast-enhanced magnetic resonance imaging to identify reversible myocardial dysfunction. N Engl J Med 343(20):1445–1453

    Article  PubMed  CAS  Google Scholar 

  33. Ibrahim EH, Stuber M, Kraitchman DL, Weiss RG, Osman NF (2007) Combined functional and viability cardiac MR imaging in a single breathhold. Magn Reson Med 58(4):843–849

    Article  Google Scholar 

  34. Matsuoka H, Hamada M, Honda T, Kawakami H, Okayama H, Abe M et al (1993) Precise assessment of myocardial damage associated with secondary cardiomyopathies by use of Gd-DTPA-enhanced magnetic resonance imaging. Angiology 44(12):945–950

    Article  PubMed  CAS  Google Scholar 

  35. Funari M, Fujita N, Peck WW, Higgins CB (1991) Cardiac tumors: assessment with Gd-DTPA enhanced MR imaging. J Comput Assist Tomogr 15(6):953–958

    Article  PubMed  CAS  Google Scholar 

  36. Prince MR (1994) Gadolinium-enhanced MR aortography. Radiology 191(1):155–164

    PubMed  CAS  Google Scholar 

  37. Prince MR, Grist TM, Debatin JF (1999) 3D contrast MR angiography. Springer, Berlin, p 197, viii

  38. Leung DA, Debatin JF (1997) Three-dimensional contrast-enhanced magnetic resonance angiography of the thoracic vasculature. Eur Radiol 7(7):981–989

    Article  PubMed  CAS  Google Scholar 

  39. Hartung MP, Grist TM, Francois CJ (2011) Magnetic resonance angiography: current status and future directions. J Cardiovasc Magn Reson 13:1–19

    Article  Google Scholar 

  40. Frydrychowicz A, Francois CJ, Turski PA (2011) Four-dimensional phase contrast magnetic resonance angiography: potential clinical applications. Eur J Radiol 80(1):24–35

    Article  PubMed  Google Scholar 

  41. Miyazaki M, Lee VS (2008) Nonenhanced MR angiography. Radiology 248(1):20–43

    Article  PubMed  Google Scholar 

  42. Klasen J, Blondin D, Schmitt P, Bi X, Sansone R, Wittsack HJ, et al. (2011) Nonenhanced ECG-gated quiescent-interval single-shot MRA (QISS-MRA) of the lower extremities: comparison with contrast-enhanced MRA. Clin Radiol. doi:10.1016/j.crad.2011.10.014

  43. Korosec FR, Frayne R, Grist TM, Mistretta CA (1996) Time-resolved contrast-enhanced 3D MR angiography. Magn Reson Med 36(3):345–351

    Article  PubMed  CAS  Google Scholar 

  44. Ho KY, Leiner T, de Haan MW, Kessels AG, Kitslaar PJ, van Engelshoven JM (1998) Peripheral vascular tree stenoses: evaluation with moving-bed infusion-tracking MR angiography. Radiology 206(3):683–692

    PubMed  CAS  Google Scholar 

  45. McCauley TR, Monib A, Dickey KW, Clemett J, Meier GH, Egglin TK et al (1994) Peripheral vascular occlusive disease: accuracy and reliability of time-of-flight MR angiography. Radiology 192(2):351–357

    PubMed  CAS  Google Scholar 

  46. Wong EC, Cronin M, Wu WC, Inglis B, Frank LR, Liu TT (2006) Velocity-selective arterial spin labeling. Magn Reson Med 55(6):1334–1341

    Article  PubMed  Google Scholar 

  47. Hodnett PA, Koktzoglou I, Davarpanah AH, Scanlon TG, Collins JD, Sheehan JJ et al (2011) Evaluation of peripheral arterial disease with nonenhanced quiescent-interval single-shot MR angiography. Radiology 260(1):282–293

    Article  PubMed  Google Scholar 

  48. Offerman EJ, Hodnett PA, Edelman RR, Koktzoglou I (2011) Nonenhanced methods for lower-extremity MRA: a phantom study examining the effects of stenosis and pathologic flow waveforms at 1.5T. J Magn Reson Imaging 33(2):401–408

    Article  PubMed  Google Scholar 

  49. Ma H, Liu J, Wang B, Lin K, Wang Y, Yang J (2012) “One-stop-shop” cardiac MRI at 3.0 T for the detection of coronary artery disease. Int J Cardiol. doi:10.1016/j.amjcard.2011.11.051

  50. Priest AN, Bansmann PM, Mullerleile K, Adam G (2007) Coronary vessel-wall and lumen imaging using radial k-space acquisition with MRI at 3 Tesla. Eur Radiol 17(2):339–346

    Article  PubMed  Google Scholar 

  51. Stuber M, Botnar RM, Danias PG, Kissinger KV, Manning WJ (1999) Submillimeter three-dimensional coronary MR angiography with real-time navigator correction: comparison of navigator locations. Radiology 212(2):579–587

    PubMed  CAS  Google Scholar 

  52. Botnar RM, Stuber M, Kissinger KV, Kim WY, Spuentrup E, Manning WJ (2000) Noninvasive coronary vessel wall and plaque imaging with magnetic resonance imaging. Circulation 102(21):2582–2587

    Article  PubMed  CAS  Google Scholar 

  53. Fayad ZA, Fuster V, Fallon JT, Jayasundera T, Worthley SG, Helft G et al (2000) Noninvasive in vivo human coronary artery lumen and wall imaging using black-blood magnetic resonance imaging. Circulation 102(5):506–510

    Article  PubMed  CAS  Google Scholar 

  54. Pelc NJ, Bernstein MA, Shimakawa A, Glover GH (1991) Encoding strategies for three-direction phase-contrast MR imaging of flow. Journal of magnetic resonance imaging: JMRI 1(4):405–413

    Article  PubMed  CAS  Google Scholar 

  55. Peng HH, Bauer S, Huang TY, Chung HW, Hennig J, Jung B et al (2010) Optimized parallel imaging for dynamic PC-MRI with multidirectional velocity encoding. Magn Reson Med 64(2):472–480

    PubMed  Google Scholar 

  56. Mohiaddin RH, Amanuma M, Kilner PJ, Pennell DJ, Manzara C, Longmore DB (1991) MR phase-shift velocity mapping of mitral and pulmonary venous flow. J Comput Assist Tomogr 15(2):237–243

    Article  PubMed  CAS  Google Scholar 

  57. Sanz J, Kuschnir P, Rius T, Salguero R, Sulica R, Einstein AJ et al (2007) Pulmonary arterial hypertension: noninvasive detection with phase-contrast MR imaging. Radiology 243(1):70–79

    Article  PubMed  Google Scholar 

  58. Beerbaum P, Korperich H, Barth P, Esdorn H, Gieseke J, Meyer H (2001) Noninvasive quantification of left-to-right shunt in pediatric patients: phase-contrast cine magnetic resonance imaging compared with invasive oximetry. Circulation 103(20):2476–2482

    Article  PubMed  CAS  Google Scholar 

  59. Galougahi KK, Harden M, Maher R, Gill A, Bhindi R, Grieve SM et al (2011) Incremental diagnostic value of magnetic resonance imaging in the characterization of a cardiac mass. J Am Coll Cardiol 58(10):e19

    Article  PubMed  Google Scholar 

  60. Mansfield P (1977) Multi-planar image formation using NMR spin echoes. J Phys C: Solid State Phys 10:L55–L58

    Article  CAS  Google Scholar 

  61. DeLaPaz RL (1994) Echo-planar imaging. Radiographics 14(5):1045–1058

    PubMed  CAS  Google Scholar 

  62. Block KT, Uecker M, Frahm J (2007) Undersampled radial MRI with multiple coils. Iterative image reconstruction using a total variation constraint. Magn Reson Med 57(6):1086–1098

    Article  PubMed  Google Scholar 

  63. Meyer CH, Hu BS, Nishimura DG, Macovski A (1992) Fast spiral coronary artery imaging. Magn Reson Med 28(2):202–213

    Article  PubMed  CAS  Google Scholar 

  64. Pruessmann KP, Weiger M, Scheidegger MB, Boesiger P (1999) SENSE: sensitivity encoding for fast MRI. Magn Reson Med 42(5):952–962

    Article  PubMed  CAS  Google Scholar 

  65. Griswold MA, Jakob PM, Heidemann RM, Nittka M, Jellus V, Wang J et al (2002) Generalized autocalibrating partially parallel acquisitions (GRAPPA). Magn Reson Med 47(6):1202–1210

    Article  PubMed  Google Scholar 

  66. Ibrahim EH, Stuber M, Fahmy AS, Abd-Elmoniem KZ, Sasano T, Abraham MR et al (2007) Real-time MR imaging of myocardial regional function using strain-encoding (SENC) with tissue through-plane motion tracking. J Magn Reson Imaging 26(6):1461–1470

    Article  Google Scholar 

  67. Taylor AM, Jhooti P, Wiesmann F, Keegan J, Firmin DN, Pennell DJ (1997) MR navigator-echo monitoring of temporal changes in diaphragm position: implications for MR coronary angiography. Journal of magnetic resonance imaging JMRI 7(4):629–636

    Article  PubMed  CAS  Google Scholar 

  68. Taylor AM, Keegan J, Jhooti P, Firmin DN, Pennell DJ (1999) Calculation of a subject-specific adaptive motion-correction factor for improved real-time navigator echo-gated magnetic resonance coronary angiography. J Cardiovasc Magn Reson 1(2):131–138

    Article  PubMed  CAS  Google Scholar 

  69. Pennell DJ (2005) T2* magnetic resonance and myocardial iron in thalassemia. Ann N Y Acad Sci 1054:373–378

    Article  PubMed  CAS  Google Scholar 

  70. Kelle S, Nagel E (2007) Cardiovascular MRI at 3 T. Eur Radiol 17(Suppl 6):F42–F47

    PubMed  Google Scholar 

  71. Niendorf T, Sodickson DK, Krombach GA, Schulz-Menger J (2010) Toward cardiovascular MRI at 7 T: clinical needs, technical solutions and research promises. Eur Radiol 20(12):2806–2816

    Article  PubMed  Google Scholar 

  72. Stanisz GJ, Odrobina EE, Pun J, Escaravage M, Graham SJ, Bronskill MJ et al (2005) T1, T2 relaxation and magnetization transfer in tissue at 3T. Magn Reson Med 54(3):507–512

    Article  PubMed  Google Scholar 

  73. Alecci M, Collins CM, Smith MB, Jezzard P (2001) Radio frequency magnetic field mapping of a 3 Tesla birdcage coil: experimental and theoretical dependence on sample properties. Magn Reson Med 46(2):379–385

    Article  PubMed  CAS  Google Scholar 

  74. Sengupta S, Avison MJ, Gore JC, Brian Welch E (2011) Software compensation of eddy current fields in multislice high order dynamic shimming. J Magn Reson 210(2):218–227

    Article  PubMed  CAS  Google Scholar 

  75. Ibrahim EH (2011) Myocardial tagging by cardiovascular magnetic resonance: evolution of techniques–pulse sequences, analysis algorithms, and applications. J Cardiovasc Magn Reson 13(1):36

    Article  Google Scholar 

  76. Zerhouni EA, Parish DM, Rogers WJ, Yang A, Shapiro EP (1988) Human heart: tagging with MR imaging–a method for noninvasive assessment of myocardial motion. Radiology 169(1):59–63

    PubMed  CAS  Google Scholar 

  77. Axel L, Dougherty L (1989) MR imaging of motion with spatial modulation of magnetization. Radiology 171(3):841–845

    PubMed  CAS  Google Scholar 

  78. Osman NF, Kerwin WS, McVeigh ER, Prince JL (1999) Cardiac motion tracking using CINE harmonic phase (HARP) magnetic resonance imaging. Magn Reson Med 42(6):1048–1060

    Article  PubMed  CAS  Google Scholar 

  79. Kojima S, Yamada N, Goto Y (1999) Diagnosis of constrictive pericarditis by tagged cine magnetic resonance imaging. N Engl J Med 341(5):373–374

    Article  PubMed  CAS  Google Scholar 

  80. Bouton S, Yang A, McCrindle BW, Kidd L, McVeigh ER, Zerhouni EA (1991) Differentiation of tumor from viable myocardium using cardiac tagging with MR imaging. J Comput Assist Tomogr 15(4):676–678

    Article  PubMed  CAS  Google Scholar 

  81. Osman NF, Sampath S, Atalar E, Prince JL (2001) Imaging longitudinal cardiac strain on short-axis images using strain-encoded MRI. Magn Reson Med 46(2):324–334

    Article  PubMed  CAS  Google Scholar 

  82. Aletras AH, Ding S, Balaban RS, Wen H (1999) DENSE: displacement encoding with stimulated echoes in cardiac functional MRI. J Magn Reson 137(1):247–252

    Article  PubMed  CAS  Google Scholar 

  83. Bradlow WM, Gatehouse PD, Hughes RL, O’Brien AB, Gibbs JS, Firmin DN et al (2007) Assessing normal pulse wave velocity in the proximal pulmonary arteries using transit time: a feasibility, repeatability, and observer reproducibility study by cardiovascular magnetic resonance. J Magn Reson Imaging 25(5):974–981

    Article  PubMed  Google Scholar 

  84. Boese JM, Bock M, Schoenberg SO, Schad LR (2000) Estimation of aortic compliance using magnetic resonance pulse wave velocity measurement. Phys Med Biol 45(6):1703–1713

    Article  PubMed  CAS  Google Scholar 

  85. Yu X, Song SK, Chen J, Scott MJ, Fuhrhop RJ, Hall CS et al (2000) High-resolution MRI characterization of human thrombus using a novel fibrin-targeted paramagnetic nanoparticle contrast agent. Magn Reson Med 44(6):867–872

    Article  PubMed  CAS  Google Scholar 

  86. Kedziorek DA, Kraitchman DL (2010) Superparamagnetic iron oxide labeling of stem cells for MRI tracking and delivery in cardiovascular disease. Methods Mol Biol 660:171–183

    Article  PubMed  CAS  Google Scholar 

  87. Morawski AM, Winter PM, Yu X, Fuhrhop RW, Scott MJ, Hockett F et al (2004) Quantitative “magnetic resonance immunohistochemistry” with ligand-targeted (19)F nanoparticles. Magnetic Reson Med 52(6):1255–1262

    Article  CAS  Google Scholar 

  88. Bottomley PA (1994) MR spectroscopy of the human heart: the status and the challenges. Radiology 191(3):593–612

    PubMed  CAS  Google Scholar 

  89. De Graaf RA (2007) In vivo NMR spectroscopy: principles and techniques. Wiley, Chichester, West Sussex, England; Hoboken, NJ, xxi, p 570, p 578 of plates p

  90. Lederman RJ (2005) Cardiovascular interventional magnetic resonance imaging. Circulation 112(19):3009–3017

    PubMed  Google Scholar 

  91. Kozerke S, Tsao J (2004) Reduced data acquisition methods in cardiac imaging. Top Magn Reson Imaging 15(3):161–168

    Article  PubMed  Google Scholar 

  92. Lustig M, Donoho D, Pauly JM (2007) Sparse MRI: the application of compressed sensing for rapid MR imaging. Magn Reson Med 58(6):1182–1195

    Article  PubMed  Google Scholar 

  93. Santos JM, Cunningham CH, Lustig M, Hargreaves BA, Hu BS, Nishimura DG et al (2006) Single breath-hold whole-heart MRA using variable-density spirals at 3 T. Magn Reson Med 55(2):371–379

    Article  PubMed  Google Scholar 

  94. Shellock FG, Fischer L, Fieno DS (2007) Cardiac pacemakers and implantable cardioverter defibrillators: in vitro magnetic resonance imaging evaluation at 1.5-tesla. J Cardiovasc Magn Reson 9(1):21–31

    Article  PubMed  Google Scholar 

  95. Kanal E, Barkovich AJ, Bell C, Borgstede JP, Bradley WG Jr, Froelich JW et al (2007) ACR guidance document for safe MR practices: 2007. AJR Am J Roentgenol 188(6):1447–1474

    Article  PubMed  Google Scholar 

Download references

Conflict of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to El-Sayed H. Ibrahim.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ibrahim, ES.H. Imaging sequences in cardiovascular magnetic resonance: current role, evolving applications, and technical challenges. Int J Cardiovasc Imaging 28, 2027–2047 (2012). https://doi.org/10.1007/s10554-012-0038-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10554-012-0038-0

Keywords

Navigation