Skip to main content
Log in

Toward cardiovascular MRI at 7 T: clinical needs, technical solutions and research promises

  • Cardiac
  • Published:
European Radiology Aims and scope Submit manuscript

Abstract

Objective

To consider potential clinical needs, technical solutions and research promises of ultrahigh-field strength cardiovascular MR (CMR).

Methods

A literature review is given, surveying advantages and disadvantages of CMR at ultrahigh fields (UHF). Key concepts, emerging technologies, practical considerations and applications of UHF CMR are provided. Examples of UHF CMR imaging strategies and their added value are demonstrated, including the numerous unsolved problems. A concluding section explores future directions in UHF CMR.

Results

UHF CMR can be regarded as one of the most challenging MRI applications. Image quality achievable at UHF is not always exclusively defined by signal-to-noise considerations. Some of the inherent advantages of UHF MRI are offset by practical challenges. But UHF CMR can boast advantages over its kindred lower field counterparts by trading the traits of high magnetic fields for increased temporal and/or spatial resolution.

Conclusions

CMR at ultrahigh-field strengths is a powerful motivator, since speed and signal may be invested to overcome the fundamental constraints that continue to hamper traditional CMR. If practical challenges can be overcome, UHF CMR will help to open the door to new approaches for basic science and clinical research.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Niendorf T, Sodickson DK (2008) Highly accelerated cardiovascular MR imaging using many channel technology: concepts and clinical applications. Eur Radiol 18:87–102

    Article  PubMed  Google Scholar 

  2. Kelle S, Nagel E (2007) Cardiovascular MRI at 3 T. Eur Radiol 17(6):F42–F47

    Article  PubMed  Google Scholar 

  3. Gutberlet M, Noeske R, Schwinge K et al (2006) Comprehensive cardiac magnetic resonance imaging at 3.0 Tesla: feasibility and implications for clinical applications. Invest Radiol 41:154–167

    Article  PubMed  Google Scholar 

  4. Gutberlet M, Schwinge K, Freyhardt P et al (2005) Influence of high magnetic field strengths and parallel acquisition strategies on image quality in cardiac 2D CINE magnetic resonance imaging: comparison of 1.5 T vs. 3.0 T. Eur Radiol 15:1586–1597

    Article  PubMed  Google Scholar 

  5. Vaughan JT, Snyder CJ, DelaBarre LJ et al (2009) Whole-body imaging at 7 T: preliminary results. Magn Reson Med 61:244–248

    Article  PubMed  Google Scholar 

  6. Snyder CJ, DelaBarre L, Metzger GJ et al (2009) Initial results of cardiac imaging at 7 Tesla. Magn Reson Med 61:517–524

    Article  CAS  PubMed  Google Scholar 

  7. Frauenrath T, Hezel F, Heinrichs U et al (2009) Feasibility of cardiac gating free of interference with electro-magnetic fields at 1.5 Tesla, 3.0 Tesla and 7.0 Tesla using an MR-stethoscope. Invest Radiol 44:539–547

    Article  PubMed  Google Scholar 

  8. van Elderen SG, Versluis MJ, Webb AG et al (2009) Initial results on in vivo human coronary MR angiography at 7 T. Magn Reson Med 62:1379–1384

    Article  PubMed  Google Scholar 

  9. Versluis MJ, Tsekos N, Smith NB et al (2009) Simple RF design for human functional and morphological cardiac imaging at 7tesla. J Magn Reson 200:161–166

    Article  CAS  PubMed  Google Scholar 

  10. Maderwald S, Orzada S, Schäfer LC, et al. (2009) Seven-Tesla human in vivo cardiac imaging with an 8-channel transmit/receive array. Proc Intl Soc Mag Reson Med 17:821; Honolulu, Hawaii, USA

    Google Scholar 

  11. Hendel RC, Patel MR, Kramer CM et al (2006) ACCF/ACR/SCCT/SCMR/ASNC/NASCI/SCAI/SIR 2006 appropriateness criteria for cardiac computed tomography and cardiac magnetic resonance imaging: a report of the American College of Cardiology Foundation Quality Strategic Directions Committee Appropriateness Criteria Working Group, American College of Radiology, Society of Cardiovascular Computed Tomography, Society for Cardiovascular Magnetic Resonance, American Society of Nuclear Cardiology, North American Society for Cardiac Imaging, Society for Cardiovascular Angiography and Interventions, and Society of Interventional Radiology. J Am Coll Cardiol 48:1475–1497

    Article  PubMed  Google Scholar 

  12. Zagrosek A, Abdel-Aty H, Boye P et al (2009) Cardiac magnetic resonance monitors reversible and irreversible myocardial injury in myocarditis. JACC Imaging 2:131–138

    Article  Google Scholar 

  13. Kwong RY, Chan AK, Brown KA et al (2006) Impact of unrecognized myocardial scar detected by cardiac magnetic resonance imaging on event-free survival in patients presenting with signs or symptoms of coronary artery disease. Circulation 113:2733–2743

    Article  PubMed  Google Scholar 

  14. Gutberlet M, Spors B, Thoma T et al (2008) Suspected chronic myocarditis at cardiac MR: diagnostic accuracy and association with immunohistologically detected inflammation and viral persistence. Radiology 246:401–409

    Article  PubMed  Google Scholar 

  15. Friedrich MG, Strohm O, Schulz-Menger J et al (1998) Contrast media-enhanced magnetic resonance imaging visualizes myocardial changes in the course of viral myocarditis. Circulation 97:1802–1809

    CAS  PubMed  Google Scholar 

  16. Wagner A, Mahrholdt H, Holly TA et al (2003) Contrast-enhanced MRI and routine single photon emission computed tomography (SPECT) perfusion imaging for detection of subendocardial myocardial infarcts: an imaging study. Lancet 361:374–379

    Article  PubMed  Google Scholar 

  17. Mahrholdt H, Wagner A, Deluigi CC et al (2006) Presentation, patterns of myocardial damage, and clinical course of viral myocarditis. Circulation 114:1581–1590

    Article  PubMed  Google Scholar 

  18. Abdel-Aty H, Boye P, Zagrosek A et al (2005) Diagnostic performance of cardiovascular magnetic resonance in patients with suspected acute myocarditis: comparison of different approaches. J Am Coll Cardiol 45:1815–1822

    Article  PubMed  Google Scholar 

  19. Cooper LT Jr (2009) Myocarditis. N Engl J Med 360:1526–1538

    Article  CAS  PubMed  Google Scholar 

  20. Zhu Y (2004) Parallel excitation with an array of transmit coils. Magn Reson Med 51:775–784

    Article  PubMed  Google Scholar 

  21. Ullmann P, Junge S, Wick M et al (2005) Experimental analysis of parallel excitation using dedicated coil setups and simultaneous RF transmission on multiple channels. Magn Reson Med 54:994–1001

    Article  PubMed  Google Scholar 

  22. Katscher U, Bornert P (2006) Parallel RF transmission in MRI. NMR Biomed 19:393–400

    Article  PubMed  Google Scholar 

  23. Katscher U, Bornert P, Leussler C et al (2003) Transmit SENSE. Magn Reson Med 49:144–150

    Article  PubMed  Google Scholar 

  24. Lattanzi R, Sodickson DK, Grant AK et al (2009) Electrodynamic constraints on homogeneity and radiofrequency power deposition in multiple coil excitations. Magn Reson Med 61:315–334

    Article  PubMed  Google Scholar 

  25. Schneider JT, Kalayciyan R, Haas M, et al (2009) Inner-Volume Imaging Using Three-Dimensional Parallel Excitation: Simulation and First Experimental Results. Third International Workshop on Parallel MRI Santa Cruz, CA, USA

  26. Zelinski AC, Angelone LM, Goyal VK et al (2008) Specific absorption rate studies of the parallel transmission of inner-volume excitations at 7 T. J Magn Reson Imaging 28:1005–1018

    Article  PubMed  Google Scholar 

  27. Van de Moortele PF, Akgun C, Adriany G et al (2005) B(1) destructive interferences and spatial phase patterns at 7 T with a head transceiver array coil. Magn Reson Med 54:1503–1518

    Article  PubMed  Google Scholar 

  28. Vaughan JT, Adriany G, Snyder CJ et al (2004) Efficient high-frequency body coil for high-field MRI. Magn Reson Med 52:851–859

    Article  CAS  PubMed  Google Scholar 

  29. Maderwald S, Orzada S, Schäfer LC, et al. (2009) Seven-Tesla human in vivo cardiac imaging with an eight-channel transmit/receive array. Proc Intl Soc Mag Reson Med 17 821 Honolulu, Hawaii, USA

  30. Dieringer MA, Renz W, Lindel T, et al (2010) A four-channel TX/RX surface coil for 7.0 T: design, optimization and application for cardiac function imaging. Proc Intl Soc Mag Reson Med 18:3583; Stockholm, SE

    Google Scholar 

  31. Renz W, Lindel T, Dieringer M, et al. (2010) A 8 channel TX/RX decoupled loop array for cardiac/body imaging at 7 T. Proc Intl Soc Mag Reson Med 18:1299; Stockholm, SE

    Google Scholar 

  32. Lanzer P, Barta C, Botvinick EH et al (1985) ECG-synchronized cardiac MR imaging: method and evaluation. Radiology 155:681–686

    CAS  PubMed  Google Scholar 

  33. Kugel H, Bremer C, Puschel M et al (2003) Hazardous situation in the MR bore: induction in ECG leads causes fire. Eur Radiol 13:690–694

    PubMed  Google Scholar 

  34. Shellock FG, Kanal E (1996) Burns associated with the use of monitoring equipment during MR procedures. J Magn Reson Imaging 6:271–272

    Article  CAS  PubMed  Google Scholar 

  35. Shellock FG, Crues JV (2004) MR procedures: biologic effects, safety, and patient care. Radiology 232:635–652

    Article  PubMed  Google Scholar 

  36. Stralka JP, Bottomley PA (2007) A prototype RF dosimeter for independent measurement of the average specific absorption rate (SAR) during MRI. J Magn Reson Imaging 26:1296–1302

    Article  PubMed  Google Scholar 

  37. Stecco A, Saponaro A, Carriero A (2007) Patient safety issues in magnetic resonance imaging: state of the art. Radiol Med 112:491–508

    Article  CAS  PubMed  Google Scholar 

  38. Fischer SE, Wickline SA, Lorenz CH (1999) Novel real-time R-wave detection algorithm based on the vectorcardiogram for accurate gated magnetic resonance acquisitions. Magn Reson Med 42:361–370

    Article  CAS  PubMed  Google Scholar 

  39. Stuber M, Botnar RM, Fischer SE et al (2002) Preliminary report on in vivo coronary MRA at 3 Tesla in humans. Magn Reson Med 48:425–429

    Article  PubMed  Google Scholar 

  40. Frauenrath T, Niendorf T, Kob M (2008) Acoustic method for synchronization of Magnetic Resonance Imaging (MRI). Acta Acustica united with Acustica 148-155

  41. Becker M, Frauenrath T, Hezel F et al (2010) Comparison of left ventricular function assessment using phonocardiogram- and electrocardiogram-triggered 2D SSFP CINE MR imaging at 1.5 T and 3.0 T. Eur Radiol 20:1344–1355

    Article  PubMed  Google Scholar 

  42. Maderwald S, Nassenstein K, Orzada S, et al. (2010) MR imaging of cardiac wall-motion at 1.5 T and 7 T: SNR and CNR comparison. Proc Intl Soc Mag Reson Med 18:1299; Stockholm, SE

    Google Scholar 

  43. Brants A, Versluis M, de Roos A, et al (2010) Quantitative comparison of left ventricular cardiac volume, mass and function obtained at 7 Tesla with “gold standard” values at 1.5 Tesla. Proc. Intl. Soc. Mag. Reson. Med. 18:1299; Stockholm, SE

    Google Scholar 

  44. ICNIRP (2009) Amendment to the ICNIRP “Statement on Medical Magnetic Resonance (MR) Procedures: Protection of Patients”. Health Phys 97:259–261

    Article  Google Scholar 

  45. von Knobelsdorff-Brenkenhoff F, Frauenrath T, Prothmann M, et al. (2010) Cardiac chamber quantification using magnetic resonance imaging at 7 Tesla-a pilot study. Eur Radiol. doi:10.1007/s00330-010-1888-2

  46. Frydrychowicz A, Arnold R, Harloff A et al (2008) Images in cardiovascular medicine. In vivo 3-dimensional flow connectivity mapping after extracardiac total cavopulmonary connection. Circulation 118:e16–e17

    Article  PubMed  Google Scholar 

  47. van Elderen SGC, Versluis MJ, Westenberg JJM, et al (2010) Coronary magnetic resonance angiography at 7 Tesla: a quantitative comparison with results at 3 Tesla. J Cardiovasc Magn Reson: vol 12 O88

  48. Caravan P, Ellison JJ, McMurry TJ et al (1999) Gadolinium(III) chelates as MRI contrast agents: structure, dynamics, and applications. Chem Rev 99:2293–2352

    Article  CAS  PubMed  Google Scholar 

  49. Modell B, Khan M, Darlison M et al (2008) Improved survival of thalassaemia major in the UK and relation to T2* cardiovascular magnetic resonance. J Cardiovasc Magn Reson 10:42

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge Mark E. Ladd and Stefan Maderwald (Erwin Hahn Institute, Essen, Germany), Saskia van Elderen and Andrew Webb (Leiden University Medical Center, Leiden, The Netherlands), Thibaut deGeyer d’Orth, Matthias Dieringer, Tobias Frauenrath, Bernd Ittermann, Tomasz Lindel, Fabian Hezel, Florian von Knobellsdorf, Wolfgang Renz and Frank Seiffert (Berlin Ultrahigh Field Facility, Berlin, Germany), all of whom kindly contributed examples of their pioneering work or other valuable assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thoralf Niendorf.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Niendorf, T., Sodickson, D.K., Krombach, G.A. et al. Toward cardiovascular MRI at 7 T: clinical needs, technical solutions and research promises. Eur Radiol 20, 2806–2816 (2010). https://doi.org/10.1007/s00330-010-1902-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00330-010-1902-8

Keywords

Navigation