Skip to main content
Log in

Temporal changes of strain parameters in the progress of chronic ischemia: with comparison to transmural infarction

  • Original Paper
  • Published:
The International Journal of Cardiovascular Imaging Aims and scope Submit manuscript

Abstract

The aim of this study was to reveal the temporal and spatial changes of strain parameters during the progression of chronic coronary ischemia. Fourteen pigs received occluder implantation to create gradual ischemia (CI), while six pigs underwent a sham surgery (Control). Six pigs after myocardial infarction were also studied (MI). Strain analysis was performed using a speckle-tracking algorithm. Eleven of the 14 animals with occluder implantation had total occlusion of the left anterior descending artery with collaterals at 1 month (early occlusion group), whereas three pigs had occlusion at 3 months (late occlusion group). Both radial strain (RS) and circumferential strain (CS) of ischemic area deteriorated at 1 month in the early occlusion group and remained at the same level throughout the remaining 2 months of the experiment. In the late occlusion group, RS gradually declined, while CS took the same course as Control until the 2 month time point. Thereafter, both metrics reached the same level as the early occlusion group at the time of occlusion. Interestingly, RS in the remote area decreased moderately, whereas CS remained normal in CI pigs. The comparison between CI and MI revealed preserved CS at the ischemic area in CI pigs. Both RS and CS deteriorate by the time total coronary occlusion was established and remain at the same level thereafter. Altered RS in the remote area may be an indicator of remodeling in the non-ischemic area, whereas CS may be useful for distinguishing between transmural and non-transmural scar.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Di Carli MF, Maddahi J, Rokhsar S, Schelbert HR, Bianco-Batlles D, Brunken RC, Fromm B (1998) Long-term survival of patients with coronary artery disease and left ventricular dysfunction: implications for the role of myocardial viability assessment in management decisions. J Thorac Cardiovasc Surg 116(6):997–1004. doi:S0022522398004759

    Article  PubMed  Google Scholar 

  2. Emond M, Mock MB, Davis KB, Fisher LD, Holmes DR Jr, Chaitman BR, Kaiser GC, Alderman E, Killip T III (1994) Long-term survival of medically treated patients in the Coronary Artery Surgery Study (CASS) registry. Circulation 90(6):2645–2657

    Article  PubMed  CAS  Google Scholar 

  3. Braunwald E, Pfeffer MA (1991) Ventricular enlargement and remodeling following acute myocardial infarction: mechanisms and management. Am J Cardiol 68(14):1D–6D

    Article  PubMed  CAS  Google Scholar 

  4. Thanavaro S, Krone RJ, Kleiger RE, Province MA, Miller JP, deMello VR, Oliver GC (1980) In-hospital prognosis of patients with first nontransmural and transmural infarctions. Circulation 61(1):29–33

    Article  PubMed  CAS  Google Scholar 

  5. Nesbitt GC, Mankad S, Oh JK (2009) Strain imaging in echocardiography: methods and clinical applications. Int J Cardiovasc Imaging 25(Suppl 1):9–22. doi:10.1007/s10554-008-9414-1

    Article  PubMed  Google Scholar 

  6. Edvardsen T, Skulstad H, Aakhus S, Urheim S, Ihlen H (2001) Regional myocardial systolic function during acute myocardial ischemia assessed by strain Doppler echocardiography. J Am Coll Cardiol 37(3):726–730. doi:S0735-1097(00)01160-8

    Article  PubMed  CAS  Google Scholar 

  7. Perk G, Tunick PA, Kronzon I (2007) Non-Doppler two-dimensional strain imaging by echocardiography—from technical considerations to clinical applications. J Am Soc Echocardiogr 20(3):234–243. doi:10.1016/j.echo.2006.08.023

    Article  PubMed  Google Scholar 

  8. Rahimtoola SH, Dilsizian V, Kramer CM, Marwick TH, Vanoverschelde JL (2008) Chronic ischemic left ventricular dysfunction: from pathophysiology to imaging and its integration into clinical practice. JACC Cardiovasc Imaging 1(4):536–555. doi:10.1016/j.jcmg.2008.05.009

    Article  PubMed  Google Scholar 

  9. Chan J, Hanekom L, Wong C, Leano R, Cho GY, Marwick TH (2006) Differentiation of subendocardial and transmural infarction using two-dimensional strain rate imaging to assess short-axis and long-axis myocardial function. J Am Coll Cardiol 48(10):2026–2033. doi:10.1016/j.jacc.2006.07.050

    Article  PubMed  Google Scholar 

  10. Becker M, Hoffmann R, Kuhl HP, Grawe H, Katoh M, Kramann R, Bucker A, Hanrath P, Heussen N (2006) Analysis of myocardial deformation based on ultrasonic pixel tracking to determine transmurality in chronic myocardial infarction. Eur Heart J 27(21):2560–2566. doi:10.1093/eurheartj/ehl288

    Article  PubMed  Google Scholar 

  11. Becker M, Lenzen A, Ocklenburg C, Stempel K, Kuhl H, Neizel M, Katoh M, Kramann R, Wildberger J, Kelm M, Hoffmann R (2008) Myocardial deformation imaging based on ultrasonic pixel tracking to identify reversible myocardial dysfunction. J Am Coll Cardiol 51(15):1473–1481. doi:10.1016/j.jacc.2007.10.066

    Article  PubMed  Google Scholar 

  12. Caillaud D, Calderon J, Reant P, Lafitte S, Dos Santos P, Couffinhal T, Roques X, Barandon L (2010) Echocardiographic analysis with a two-dimensional strain of chronic myocardial ischemia induced with ameroid constrictor in the pig. Interact Cardiovasc Thorac Surg 10(5):689–693. doi:10.1510/icvts.2010.232819

    Article  PubMed  Google Scholar 

  13. Ishikawa K, Ladage D, Takewa Y, Yaniz E, Chen J, Tilemann L, Sakata S, Badimon JJ, Hajjar RJ, Kawase Y (2011) Development of a pre-clinical model of ischemic cardiomyopathy in swine. Am J Physiol Heart Circ Physiol 301:H530–H537. doi:10.1152/ajpheart.01103.2010

    Article  PubMed  CAS  Google Scholar 

  14. Ishikawa K, Ladage D, Tilemann L, Fish K, Kawase Y, Hajjar RJ (2011) Gene transfer for ischemic heart failure in a preclinical model. J Vis Exp (51). doi:10.3791/2778

  15. Canty JM Jr, Klocke FJ (1987) Reductions in regional myocardial function at rest in conscious dogs with chronically reduced regional coronary artery pressure. Circ Res 61(5 Pt 2):II107–II116

    PubMed  Google Scholar 

  16. Heusch G, Schulz R, Rahimtoola SH (2005) Myocardial hibernation: a delicate balance. Am J Physiol Heart Circ Physiol 288(3):H984–H999. doi:10.1152/ajpheart.01109.2004

    Article  PubMed  CAS  Google Scholar 

  17. Jones CJ, Raposo L, Gibson DG (1990) Functional importance of the long axis dynamics of the human left ventricle. Br Heart J 63(4):215–220

    Article  PubMed  CAS  Google Scholar 

  18. Kudej RK, Ghaleh B, Sato N, Shen YT, Bishop SP, Vatner SF (1998) Ineffective perfusion-contraction matching in conscious, chronically instrumented pigs with an extended period of coronary stenosis. Circ Res 82(11):1199–1205

    Article  PubMed  CAS  Google Scholar 

  19. Gallagher KP, Osakada G, Matsuzaki M, Miller M, Kemper WS, Ross J Jr (1985) Nonuniformity of inner and outer systolic wall thickening in conscious dogs. Am J Physiol 249(2 Pt 2):H241–H248

    PubMed  CAS  Google Scholar 

  20. Myers JH, Stirling MC, Choy M, Buda AJ, Gallagher KP (1986) Direct measurement of inner and outer wall thickening dynamics with epicardial echocardiography. Circulation 74(1):164–172

    Article  PubMed  CAS  Google Scholar 

  21. Greenbaum RA, Ho SY, Gibson DG, Becker AE, Anderson RH (1981) Left ventricular fibre architecture in man. Br Heart J 45(3):248–263

    Article  PubMed  CAS  Google Scholar 

  22. Clark NR, Reichek N, Bergey P, Hoffman EA, Brownson D, Palmon L, Axel L (1991) Circumferential myocardial shortening in the normal human left ventricle. Assessment by magnetic resonance imaging using spatial modulation of magnetization. Circulation 84(1):67–74

    Article  PubMed  CAS  Google Scholar 

  23. Cho GY, Marwick TH, Kim HS, Kim MK, Hong KS, Oh DJ (2009) Global 2-dimensional strain as a new prognosticator in patients with heart failure. J Am Coll Cardiol 54(7):618–624. doi:10.1016/j.jacc.2009.04.061

    Article  PubMed  Google Scholar 

  24. Kimura K, Takenaka K, Ebihara A, Uno K, Iwata H, Sata M, Kohro T, Morita H, Yatomi Y, Nagai R (2011) Reproducibility and diagnostic accuracy of three-layer speckle tracking echocardiography in a Swine chronic ischemia model. Echocardiography 28(10):1148–1155. doi:10.1111/j.1540-8175.2011.01517.x

    Article  PubMed  Google Scholar 

  25. Adamu U, Schmitz F, Becker M, Kelm M, Hoffmann R (2009) Advanced speckle tracking echocardiography allowing a three-myocardial layer-specific analysis of deformation parameters. Eur J Echocardiogr 10(2):303–308. doi:10.1093/ejechocard/jen238

    Article  PubMed  Google Scholar 

  26. Kleijn SA, Aly MF, Terwee CB, van Rossum AC, Kamp O (2011) Reliability of left ventricular volumes and function measurements using three-dimensional speckle tracking echocardiography. Eur J Echocardiogr. doi:10.1093/ejechocard/jer174

    Google Scholar 

  27. Jackson BM, Gorman JH, Moainie SL, Guy TS, Narula N, Narula J, John-Sutton MG, Edmunds LH Jr, Gorman RC (2002) Extension of borderzone myocardium in postinfarction dilated cardiomyopathy. J Am Coll Cardiol 40(6):1160–1167. doi:S0735109702021216 discussion 1168–1171

    Article  PubMed  Google Scholar 

  28. Jackson BM, Parish LM, Gorman JH III, Enomoto Y, Sakamoto H, Plappert T, St John Sutton MG, Salgo I, Gorman RC (2005) Borderzone geometry after acute myocardial infarction: a three-dimensional contrast enhanced echocardiographic study. Ann Thorac Surg 80(6):2250–2255. doi:10.1016/j.athoracsur.2005.05.103

    Article  PubMed  Google Scholar 

  29. Migrino RQ, Zhu X, Morker M, Brahmbhatt T, Bright M, Zhao M (2008) Myocardial dysfunction in the periinfarct and remote regions following anterior infarction in rats quantified by 2D radial strain echocardiography: an observational cohort study. Cardiovasc Ultrasound 6:17. doi:10.1186/1476-7120-6-17

    Article  PubMed  Google Scholar 

  30. Moen CA, Salminen PR, Grong K, Matre K (2011) Left ventricular strain, rotation, and torsion as markers of acute myocardial ischemia. Am J Physiol Heart Circ Physiol 300(6):H2142–H2154. doi:10.1152/ajpheart.01012.2010

    Article  PubMed  CAS  Google Scholar 

  31. Burns AT, La Gerche A, D’Hooge J, MacIsaac AI, Prior DL (2010) Left ventricular strain and strain rate: characterization of the effect of load in human subjects. Eur J Echocardiogr 11(3):283–289. doi:10.1093/ejechocard/jep214

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

Special thanks goes to Catherine McMahon, BS and James Lough for providing technical expertise. This work is supported by Leducq Foundation through the Caerus network (RJH), by NIH R01 HL093183, HL088434, HL071763, HL080498, HL083156, and P20HL100396 (RJH). DL was supported by the German Research Foundation. ERC was supported by T32HL007824 (NIH-NHLBI).

Conflict of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roger J. Hajjar.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ishikawa, K., Kawase, Y., Ladage, D. et al. Temporal changes of strain parameters in the progress of chronic ischemia: with comparison to transmural infarction. Int J Cardiovasc Imaging 28, 1671–1681 (2012). https://doi.org/10.1007/s10554-012-0010-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10554-012-0010-z

Keywords

Navigation