Skip to main content
Log in

Intracoronary optical coherence tomography, basic theory and image acquisition techniques

  • Review
  • Published:
The International Journal of Cardiovascular Imaging Aims and scope Submit manuscript

Abstract

Optical coherence tomography (OCT) imaging is showing great potential as an alternative or complementary tool to intravascular ultrasound (IVUS) for aiding in stent procedures and future diagnosis/treatment of atherosclerosis. Here, we describe the basic theory behind OCT imaging and explain important parameters such as axial resolution, lateral resolution and sensitivity. Also, we describe several image acquisition techniques that have been adopted for OCT imaging.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Drexler W, Fujimoto JG (eds) (2008) Optical coherence tomography technology and applications. Springer, Heidelberg

    Google Scholar 

  2. Huang D et al (1991) Optical coherence tomography. Science 254(5035):1178–1181

    Article  PubMed  CAS  Google Scholar 

  3. Fercher AF et al (2003) Optical coherence tomography—principles and applications. Reports Progress Phys 66:239

    Article  Google Scholar 

  4. Bouma BE, Tearney GJ (eds) (2003) Handbook of optical coherence tomography. Marcel Dekker, Inc., New York

    Google Scholar 

  5. Regar E, Serruys PW, Van Leeuwen TG (eds) (2007) Optical coherence tomography in cardiovascular research. Informa Healthcare, London

    Google Scholar 

  6. Tearney GJ et al (1997) In vivo endoscopic optical biopsy with optical coherence tomography. Science 276(5321):2037–2039

    Article  PubMed  CAS  Google Scholar 

  7. Tearney GJ et al (1996) Scanning single-mode fiber optic catheter-endoscope for optical coherence tomography: erratum. Opt Lett 21(12):912

    Article  PubMed  CAS  Google Scholar 

  8. Rollins AM et al (1999) Real-time in vivo imaging of human gastrointestinal ultrastructure by use of endoscopic optical coherence tomography with a novel efficient interferometer design. Opt Lett 24(19):1358–1360

    Article  PubMed  CAS  Google Scholar 

  9. Yun SH et al (2007) Comprehensive volumetric optical microscopy in vivo. Nat Med 12(12):1429–1433

    Article  Google Scholar 

  10. Xi J et al (2009) High-resolution OCT balloon imaging catheter with astigmatism correction. Opt Lett 34(13):1943–1945

    Article  PubMed  Google Scholar 

  11. Tearney GJ et al (1996) Scanning single-mode fiber optic catheter-endoscope for optical coherence tomography. Opt Lett 21(7):543–545

    Article  PubMed  CAS  Google Scholar 

  12. Brezinski ME et al (1996) Optical coherence tomography for optical biopsy. Properties and demonstration of vascular pathology. Circulation 93(6):1206–1213

    PubMed  CAS  Google Scholar 

  13. Jang IK et al (2002) Visualization of coronary atherosclerotic plaques in patients using optical coherence tomography: comparison with intravascular ultrasound. J Am Coll Cardiol 39(4):604–609

    Article  PubMed  Google Scholar 

  14. Jang IK, Tearney G, Bouma B (2001) Visualization of tissue prolapse between coronary stent struts by optical coherence tomography: comparison with intravascular ultrasound. Circulation 104(22):2754

    Article  PubMed  CAS  Google Scholar 

  15. Huber R, Wojtkowski M, Fujimoto JG (2006) Fourier Domain Mode Locking (FDML): A new laser operating regime and applications for optical coherence tomography. Opt Express 14(8):3225–3237

    Article  PubMed  CAS  Google Scholar 

  16. Jenkins MW et al (2007) Ultrahigh-speed optical coherence tomography imaging and visualization of the embryonic avian heart using a buffered Fourier Domain Mode Locked laser. Opt Express 15(10):6251–6267

    Article  PubMed  CAS  Google Scholar 

  17. Choma M et al (2003) Sensitivity advantage of swept source and Fourier domain optical coherence tomography. Opt Express 11(18):2183–2189

    Article  PubMed  Google Scholar 

  18. de Boer JF et al (2003) Improved signal-to-noise ratio in spectral-domain compared with time-domain optical coherence tomography. Opt Lett 28(21):2067–2069

    Article  PubMed  Google Scholar 

  19. Leitgeb R, Hitzenberger C, Fercher A (2003) Performance of fourier domain vs. time domain optical coherence tomography. Opt Express 11(8):889–894

    Article  PubMed  CAS  Google Scholar 

  20. Fercher AF et al (1995) Measurement of intraocular distances by backscattering spectral interferometry. Opt Commun 117(1–2):43–48

    Article  CAS  Google Scholar 

  21. Golubovic B et al (1997) Optical frequency-domain reflectometry using rapid wavelength tuning of a Cr4 + : forsterite laser. Opt Lett 22:1704–1706

    Article  PubMed  CAS  Google Scholar 

  22. Choma MA, Hsu K, Izatt JA (2005) Swept source optical coherence tomography using an all-fiber 1300-nm ring laser source. J Biomed Opt 10(4):44009

    Article  PubMed  Google Scholar 

  23. Yun S et al (2003) High-speed optical frequency-domain imaging. Opt Express 11(22):2953–2963

    Article  PubMed  CAS  Google Scholar 

  24. Prati F et al (2010) Expert review document on methodology, terminology, and clinical applications of optical coherence tomography: physical principles, methodology of image acquisition, and clinical application for assessment of coronary arteries and atherosclerosis. Eur Heart J 31(4):401–415

    Article  PubMed  Google Scholar 

  25. Yabushita H et al (2002) Characterization of human atherosclerosis by optical coherence tomography. Circulation 106(13):1640–1645

    Article  PubMed  Google Scholar 

  26. Kume T et al (2006) Assessment of coronary arterial plaque by optical coherence tomography. Am J Cardiol 97(8):1172–1175

    Article  PubMed  Google Scholar 

  27. Regar E, Prati F, Serruys PW (2006) Intracoronary OCT application: methodological considerations. In: Van Leeuwen TG, Serruys PW (eds) Handbook of optical coherence tomography. Taylor & Francis Books Ltd, London, pp 53–64

    Google Scholar 

  28. Tanigawa J, Barlis P, Di Mario C (2007) Intravascular optical coherence tomography: optimisation of image acquisition and quantitative assessment of stent strut apposition. EuroIntervention 3(1):128–136

    PubMed  Google Scholar 

  29. Prati F et al (2008) From bench to bedside: a novel technique of acquiring OCT images. Circ J 72(5):839–843

    Article  PubMed  Google Scholar 

  30. Prati F et al (2007) Safety and feasibility of a new non-occlusive technique for facilitated intracoronary optical coherence tomography (OCT) acquisition in various clinical and anatomical scenarios. EuroIntervention 3(3):365–370

    Article  PubMed  Google Scholar 

  31. Tearney GJ et al (2008) Three-dimensional coronary artery microscopy by intracoronary optical frequency domain imaging. JACC Cardiovasc Imaging 1(6):752–761

    Article  PubMed  Google Scholar 

  32. Imola F, et al. (in press) Safety and feasibility of Frequency Domain- Optical Coherence Tomography to guide decision making in percutaneous coronary intervention. EuroIntervention

  33. Takarada S et al (2010) Advantage of next-generation frequency-domain optical coherence tomography compared with conventional time-domain system in the assessment of coronary lesion. Catheter Cardiovasc Interv 75(2):202–206

    Article  PubMed  Google Scholar 

  34. Barlis P et al (2009) A multicentre evaluation of the safety of intracoronary optical coherence tomography. EuroIntervention 5(1):90–95

    Article  PubMed  Google Scholar 

  35. Serruys PW et al (2009) A bioabsorbable everolimus-eluting coronary stent system (ABSORB): 2-year outcomes and results from multiple imaging methods. Lancet 373(9667):897–910

    Article  PubMed  CAS  Google Scholar 

  36. Barlis P et al (2010) Quantitative analysis of intracoronary optical coherence tomography measurements of stent strut apposition and tissue coverage. Int J Cardiol 141(2):151–156

    Article  PubMed  Google Scholar 

  37. Capodanno D et al (2009) Comparison of optical coherence tomography and intravascular ultrasound for the assessment of in-stent tissue coverage after stent implantation. EuroIntervention 5(5):538–543

    Article  PubMed  Google Scholar 

  38. von Birgelen C et al (1997) ECG-gated three-dimensional intravascular ultrasound: feasibility and reproducibility of the automated analysis of coronary lumen and atherosclerotic plaque dimensions in humans. Circulation 96(9):2944–2952

    Google Scholar 

  39. Bruining N et al (1998) ECG-gated versus nongated three-dimensional intracoronary ultrasound analysis: implications for volumetric measurements. Cathet Cardiovasc Diagn 43(3):254–260

    Article  PubMed  CAS  Google Scholar 

  40. Yazdanfar S, Kulkarni M, Izatt J (1997) High resolution imaging of in vivo cardiac dynamics using color Doppler optical coherence tomography. Opt Express 1(13):424–431

    Article  PubMed  CAS  Google Scholar 

  41. Chen Z et al (1997) Noninvasive imaging of in vivo blood flow velocity using optical Doppler tomography. Opt Lett 22(14):1119–1121

    Article  PubMed  CAS  Google Scholar 

Download references

Conflict of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. W. Jenkins.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Prati, F., Jenkins, M.W., Di Giorgio, A. et al. Intracoronary optical coherence tomography, basic theory and image acquisition techniques. Int J Cardiovasc Imaging 27, 251–258 (2011). https://doi.org/10.1007/s10554-011-9798-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10554-011-9798-1

Keywords

Navigation