Skip to main content

Physical Principles and Equipment of Intravascular Optical Coherence Tomography

  • Chapter
  • First Online:
Coronary Imaging and Physiology

Abstract

Optical coherence tomography (OCT) is an emerging imaging modality analogous to intravascular ultrasound imaging but uses light instead of sound. The integration of a fiber-optic probe with frequency domain OCT enables video images that display the location and changes of coronary plaques and stent apposition in live patients. This chapter details the basic principles of intravascular optical coherence tomography (IV-OCT) in clinical practice. The system architecture and catheter structure consisting of an optical probe and a protective sheath are discussed in detail. Also, recent technology advances in IV-OCT are briefly introduced.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Huang D, Swanson EA, Lin CP, Schuman JS, Stinson WG, Chang W, et al. Optical coherence tomography. Science. 1991;254(5035):1178–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Fercher AF, Hitzenberger CK, Drexler W, Kamp G, Sattmann H. In-vivo optical coherence tomography. Am J Ophthalmol. 1993;116(1):113–5.

    Article  CAS  PubMed  Google Scholar 

  3. Gladkova ND, Petrova GA, Nikulin NK, Radenska-Lopovok SG, Snopova LB, Chumakov YP, et al. In vivo optical coherence tomography imaging of human skin: norm and pathology. Skin Res Technol. 2000;6(1):6–16.

    Article  PubMed  Google Scholar 

  4. Tearney GJ, Waxman S, Shishkov M, Vakoc BJ, Suter MJ, Freilich MI, et al. Three-dimensional coronary artery microscopy by intracoronary optical frequency domain imaging. JACC Cardiovasc Imaging. 2008;1(6):752–61.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Drexler W, Fujimoto JG. Optical coherence tomography : technology and applications. Berlin: Springer; 2008. xxix, 1346 p.

    Book  Google Scholar 

  6. Szabo TL. Diagnostic ultrasound imaging: inside out. Burlington: Elsevier; 2004.

    Google Scholar 

  7. Beaud P, Schutz J, Hodel W, Weber HP, Gilgen HH, Salathe RP. Optical reflectometry with micrometer resolution for the investigation of integrated optical-devices. IEEE J Quantum Electron. 1989;25(4):755–9.

    Article  CAS  Google Scholar 

  8. Takada K, Yokohama I, Chida K, Noda J. New measurement system for fault location in optical wave-guide devices based on an interferometric-technique. Appl Opt. 1987;26(9):1603–6.

    Article  CAS  PubMed  Google Scholar 

  9. Youngquist RC, Carr S, Davies DEN. Optical coherence-domain Reflectometry—a new optical evaluation technique. Opt Lett. 1987;12(3):158–60.

    Article  CAS  PubMed  Google Scholar 

  10. Huang D, Wang J, Lin CP, Puliafito CA, Fujimoto JG. Micron-resolution ranging of cornea anterior chamber by optical reflectometry. Lasers Surg Med. 1991;11(5):419–25.

    Article  CAS  PubMed  Google Scholar 

  11. Choma MA, Sarunic MV, Yang CH, Izatt JA. Sensitivity advantage of swept source and Fourier domain optical coherence tomography. Opt Express. 2003;11(18):2183–9.

    Article  PubMed  Google Scholar 

  12. Leitgeb R, Hitzenberger C, Fercher A. Performance of fourier domain vs. time domain optical coherence tomography. Opt Express. 2003;11(8):889–94.

    Article  CAS  PubMed  Google Scholar 

  13. Rollins AM, Kulkarni MD, Yazdanfar S, Ung-arunyawee R, Izatt JA. In vivo video rate optical coherence tomography. Opt Express. 1998;3(6):219–29.

    Article  CAS  PubMed  Google Scholar 

  14. Tearney GJ, Bouma BE, Fujimoto JG. High-speed phase- and group-delay scanning with a grating-based phase control delay line. Opt Lett. 1997;22(23):1811–3.

    Article  CAS  PubMed  Google Scholar 

  15. Chinn SR, Swanson EA, Fujimoto JG. Optical coherence tomography using a frequency-tunable optical source. Opt Lett. 1997;22(5):340–2.

    Article  CAS  PubMed  Google Scholar 

  16. Fercher AF, Hitzenberger CK, Kamp G, Elzaiat SY. Measurement of intraocular distances by backscattering spectral interferometry. Opt Commun. 1995;117(1–2):43–8.

    Article  CAS  Google Scholar 

  17. Golubovic B, Bouma BE, Tearney GJ, Fujimoto JG. Optical frequency-domain reflectometry using rapid wavelength tuning of a Cr4+:forsterite laser. Opt Lett. 1997;22(22):1704–6.

    Article  CAS  PubMed  Google Scholar 

  18. Yun SH, Tearney GJ, Bouma BE, Park BH, de Boer JF. High-speed spectral-domain optical coherence tomography at 1.3 mu m wavelength. Opt Express. 2003;11(26):3598–604.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Yun SH, Tearney GJ, de Boer JF, Iftimia N, Bouma BE. High-speed optical frequency-domain imaging. Opt Express. 2003;11(22):2953–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Tearney GJ, Boppart SA, Bouma BE, Brezinski ME, Weissman NJ, Southern JF, et al. Scanning single-mode fiber optic catheter-endoscope for optical coherence tomography. Opt Lett. 1996;21(7):543–5.

    Article  CAS  PubMed  Google Scholar 

  21. Yaqoob Z, Wu JG, McDowell EJ, Heng X, Yang CH. Methods and application areas of endoscopic optical coherence tomography. J Biomed Opt. 2006;11(6):063001.

    Article  PubMed  Google Scholar 

  22. Tearney GJ, Brezinski ME, Boppart SA, Bouma BE, Weissman N, Southern JF, et al. Catheter-based optical imaging of a human coronary artery. Circulation. 1996;94(11):3013.

    Article  CAS  PubMed  Google Scholar 

  23. Tearney GJ, Jang IK, Kang DH, Aretz HT, Houser SL, Brady TJ, et al. Optical coherence tomography of human coronary arteries: a new imaging modality to visualize different components of plaques. J Am Coll Cardiol. 2000;35(2):52a–3a.

    Google Scholar 

  24. Jang IK, Tearney G, Bouma B. Visualization of tissue prolapse between coronary stent struts by optical coherence tomography—comparison with intravascular ultrasound. Circulation. 2001;104(22):2754.

    Article  CAS  PubMed  Google Scholar 

  25. Inami S, Wang Z, Ming-Juan Z, Takano M, Mizuno K. Current status of optical coherence tomography. Cardiovasc Interv Ther. 2011;26(3):177–85.

    Article  PubMed  Google Scholar 

  26. Terashima M, Kaneda H, Suzuki T. The role of optical coherence tomography in coronary intervention. Korean J Intern Med. 2012;27(1):1–12.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Yun SH, Tearney GJ, Vakoc BJ, Shishkov M, Oh WY, Desjardins AE, et al. Comprehensive volumetric optical microscopy in vivo. Nat Med. 2006;12(12):1429–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Okamura T, Onuma Y, Garcia-Garcia HM, van Geuns RJ, Wykrzykowska JJ, Schultz C, et al. First-in-man evaluation of intravascular optical frequency domain imaging (OFDI) of Terumo: a comparison with intravascular ultrasound and quantitative coronary angiography. EuroIntervention. 2011;6(9):1037–45.

    Article  PubMed  Google Scholar 

  29. Swanson EA, Huang D, Hee MR, Fujimoto JG, Lin CP, Puliafito CA. High-speed optical coherence domain reflectometry. Opt Lett. 1992;17(2):151–3.

    Article  CAS  PubMed  Google Scholar 

  30. Saleh BEA, Teich MC. Fundamentals of photonics. 2nd ed. Hoboken: Wiley; 2007. xix, 1175 p.

    Google Scholar 

  31. Lowe HC, Narula J, Fujimoto JG, Jang IK. Intracoronary optical diagnostics current status, limitations, and potential. JACC Cardiovasc Interv. 2011;4(12):1257–70.

    Article  PubMed  Google Scholar 

  32. Tearney GJ, Regar E, Akasaka T, Adriaenssens T, Barlis P, Bezerra HG, et al. Consensus standards for acquisition, measurement, and reporting of intravascular optical coherence tomography studies: a report from the international working group for intravascular optical coherence tomography standardization and validation. J Am Coll Cardiol. 2012;59(12):1058–72.

    Article  PubMed  Google Scholar 

  33. Ha JY, Shishkov M, Colice M, Oh WY, Yoo H, Liu L, et al. Compensation of motion artifacts in catheter-based optical frequency domain imaging. Opt Express. 2010;18(11):11418–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Ha J, Yoo H, Tearney GJ, Bouma BE. Compensation of motion artifacts in intracoronary optical frequency domain imaging and optical coherence tomography. Int J Cardiovasc Imaging. 2012;28(6):1299–304.

    Article  PubMed  Google Scholar 

  35. Jang SJ, Park HS, Song JW, Kim TS, Cho HS, Kim S, et al. ECG-triggered, single cardiac cycle, high-speed, 3D, intracoronary OCT. JACC Cardiovasc Imaging. 2016;9(5):623–5.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Liu LB, Gardecki JA, Nadkarni SK, Toussaint JD, Yagi Y, Bouma BE, et al. Imaging the subcellular structure of human coronary atherosclerosis using micro-optical coherence tomography. Nat Med. 2011;17(8):1010–U132.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Kuo WC, Chou NK, Chou C, Lai CM, Huang HJ, Wang SS, et al. Polarization-sensitive optical coherence tomography for imaging human atherosclerosis. Appl Opt. 2007;46(13):2520–7.

    Article  PubMed  Google Scholar 

  38. Nadkarni SK, Pierce MC, Park BH, de Boer JF, Whittaker P, Bouma BE, et al. Measurement of collagen and smooth muscle cell content in atherosclerotic plaques using polarization-sensitive optical coherence tomography. J Am Coll Cardiol. 2007;49(13):1474–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. van der Sijde JN, Karanasos A, Villiger M, Bouma BE, Regar E. First-in-man assessment of plaque rupture by polarization-sensitive optical frequency domain imaging in vivo. Eur Heart J. 2016;37(24):1932.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Villiger M, Karanasos A, Ren J, Lippok N, Shishkov M, van Soest G, et al., editors. Intravascular polarization sensitive optical coherence tomography in human patients. Conference on Lasers and Electro-Optics. San Jose: Optical Society of America; 2016.

    Google Scholar 

  41. Lee S, Lee MW, Cho HS, Song JW, Nam HS, Oh DJ, et al. Fully integrated high-speed intravascular optical coherence tomography/near-infrared fluorescence structural/molecular imaging in vivo using a clinically available near-infrared fluorescence-emitting indocyanine green to detect inflamed lipid-rich atheromata in coronary-sized vessels. Circ Cardiovasc Interv. 2014;7(4):560–9.

    Article  CAS  PubMed  Google Scholar 

  42. Ughi GJ, Wang H, Gerbaud E, Gardecki JA, Fard AM, Hamidi E, et al. Clinical characterization of coronary atherosclerosis with dual-modality OCT and near-infrared autofluorescence imaging. JACC Cardiovasc Imaging. 2016;9(11):1304–14.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Li J, Ma T, Mohar D, Steward E, Yu M, Piao Z, et al. Ultrafast optical-ultrasonic system and miniaturized catheter for imaging and characterizing atherosclerotic plaques in vivo. Sci Rep. 2015;5:18406.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jinyong Ha .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Cite this chapter

Ha, J. (2018). Physical Principles and Equipment of Intravascular Optical Coherence Tomography. In: Hong, MK. (eds) Coronary Imaging and Physiology. Springer, Singapore. https://doi.org/10.1007/978-981-10-2787-1_10

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-2787-1_10

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-2786-4

  • Online ISBN: 978-981-10-2787-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics