Skip to main content
Log in

Low dose dual-source CT angiography of the thoracic aorta

  • Original Paper
  • Published:
The International Journal of Cardiovascular Imaging Aims and scope Submit manuscript

Abstract

The purpose of this study was to investigate the effects of a prospective ECG-gated, low kilovoltage and low mAs protocol on image quality and radiation dose when acquiring CT angiography of the thoracic aorta (CTTA). Sixty patients with a body mass index (BMI) of less than 30 and a heart rate of less than 100 beats per minute (bpm) were included in the study. Thirty consecutive patients were examined with retrospective ECG-gating and standard parameters (group A) (120 kVp, 340 reference effective mAs).The next thirty (group B) were examined with prospective ECG-gating, 100 kVp and 170 mAs. Quantitative analysis included measurements of image resolution of the thoracic aorta at three levels, mean attenuation in the aorta and signal to noise ratio (SNR). Qualitative analysis assessed image artifact and graded image quality on five point scales. Effective radiation doses were estimated. The radiation dose of group A was 26.2 ± 6.0 mSv (mean ± standard deviation). For group B it was 2.9 ± 0.5 mSv (P < 0.001). Mean aortic attenuation was significantly higher in group B than group A (487 ± 100 Hu and 372 ± 74 Hu) (P < 0.01).SNR was significantly higher in group A (21.7 ± 5.7 compared to 14.5 ± 5.3) (P < 0.01). Image resolution was significantly higher in group B at all measured anatomical levels (P < 0.01). There was no significant difference in the final subjective scores between group A and group B (Mann–Whitney U = 438, P = 0.79). High quality low dose CTTA is clinically achievable, in patients with a BMI less than 30 and a heart rate less than 100 bpm, using a prospective ECG-gated, low kilovoltage, low mAs technique.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Keane MG, Wiegers SE, Plappert T et al (2000) Bicuspid aortic valves are associated with aortic dilatation out of proportion to coexistent valvular lesions. Circulation 102(suppl):III35–III39

    PubMed  CAS  Google Scholar 

  2. Davies RR, Kaple RK, Mandapati D et al (2007) Natural history of ascending aortic aneurysms in the setting of an unreplaced bicuspid aortic valve. Ann Thorac Surg 83:1400–1405

    Google Scholar 

  3. Chiles C, Carr JJ (2005) Vascular diseases of the thorax: evaluation with multidetector CT. Radiol Clin North Am 43:543–569

    Article  PubMed  Google Scholar 

  4. Quanadli SD, El Hajjam M, Mesurolle B et al (1999) Motion artifacts of the aorta simulating aortic dissection on spiral CT. J Comput Assist Tomogr 23:1–6

    Article  Google Scholar 

  5. Loubeyre P, Angelie E, Grozel F et al (1997) Spiral CT artifact that simulated aortic dissection: image reconstruction with the use of 180° and 360° linear-interpolation algorithms. Radiology 205:153–157

    PubMed  CAS  Google Scholar 

  6. Fleischman D, Rubin GD, Paik DS et al (2000) Stair-step artifacts with single versus multiple detector-row helical CT. Radiology 216:185–196

    Google Scholar 

  7. Batra P, Bigoni B, Manning J et al (2000) Pitfalls in the diagnosis of thoracic aortic dissection at CT angiography. Radiographics 20:309–320

    PubMed  CAS  Google Scholar 

  8. Ko SF, Hseih MJ, Chen MC et al (2005) Effects of heart rate on motion artifacts of the aorta on non-ECG-assisted 0.5-sec thoracic MDCT. AJR Am J Roentenol 184:1225–1230

    Google Scholar 

  9. Roos J, Willmann J, Weishaupt D et al (2002) Thoracic aorta: motion artifact reduction with retrospective and prospective electrocardiography-assisted multi-detector row CT. Radiology 222:271–277

    Article  PubMed  Google Scholar 

  10. Van Prehn A, Vincken KL, Muhs BE et al (2007) Toward endografting of the ascending aorta: insight into the dynamics using dynamic cine-CTA. J Endovasc Ther 14:551–560

    Article  PubMed  Google Scholar 

  11. Van Prehn A, Bartels LW, Mestres G et al (2009) Dynamic aortic changes in patients with thoracic aortic aneurysms evaluated with electrocardiography-triggered computed tomographic angiography before and after thoracic endovascular aneurysm repair: preliminary results. Ann Vasc Surg 23(3):291–297

    Article  PubMed  Google Scholar 

  12. Ohnesorge B, Flohr T, Becker C et al (2000) Cardiac imaging by means of electrocardiographically gated multisection spiral CT: initial experience. Radiology 2:564–571

    Google Scholar 

  13. Nieman K, Oudkerk M, Rensing B et al (2001) Coronary-angiography with multi-sliced computed tomography. Lancet 357:599–603

    Article  PubMed  CAS  Google Scholar 

  14. Stolzmann P, Leschka S, Scheffel H et al (2008) Dual-source CT in Step-and-Shoot mode: noninvasive coronary angiography with low radiation dose. Radiology 249:71–80

    Article  PubMed  Google Scholar 

  15. Schertler T, Glucker S, Wildermuth S et al (2005) Comparison of retrospectively ECG-gated and non-gated MDCT of the chest in an emergency setting regarding workflow, image quality and diagnostic certainty. Emerg Radiol 12:19–29

    Article  PubMed  Google Scholar 

  16. Hausleiter J, Meyer T, Hadamitzky M et al (2006) Radiation dose estimates from cardiac multislice computed tomography in daily practice: impact of different scanning protocols on effective dose estimates. Circulation 113:1305–1310

    Article  PubMed  Google Scholar 

  17. Bischoff B, Hein F, Meyer T et al (2009) Impact of a reduced tube voltage on CT angiography and radiation dose. Results of the PROTECTION 1 study. J Am Coll Cardiol Img 2:940–946

    Google Scholar 

  18. Fleischmann D (2003) Use of high-concentration contrast media in multiple-detector-row CT: principles and rationale. Eur Radiol 13(suppl 5):M14–M20

    PubMed  Google Scholar 

  19. Carr JC, Ma J, Desphande V et al (2002) High-resolution breath-hold contrast-enhanced MR angiography of the entire carotid circulation. AJR Am J Roentenol 178:543–549

    Google Scholar 

  20. Groves EM, Bireley W, Dill K et al (2007) Quantitative analysis of ECG-gated high-resolution contrast-enhanced MR angiography of the thoracic aorta. AJR Am J Roentenol 188:522–528

    Article  Google Scholar 

  21. McCollough CH, Primak AN, Saba O et al (2007) Dose performance of a 64-channel dual-source CT scanner. Radiology 243:775–784

    Article  PubMed  Google Scholar 

  22. Menzel H, Schibilla H, Teunen D (eds) (2000) European guidelines on quality criteria for computed tomography. Publication no. EUR 16262 EN. European Comission, Luxembourg

    Google Scholar 

  23. Gerber TC, Kuzo RS, Morin RL (2002) Techniques and parameters for estimating radiation exposure and dose in cardiac computed tomography. Int J Cardiovasc Imaging 21:165–176

    Article  Google Scholar 

  24. Morin RL (1998) Monte Carlo simulation in the radiological sciences. CRC, Boca Raton

    Google Scholar 

  25. Davies RR, Goldstein LJ, Coady MA et al (2002) Yearly rupture or dissection rates for thoracic aortic aneurysms: simple prediction based on size. Ann Thorac Surg 73:17–27

    Article  PubMed  Google Scholar 

  26. Ergin MA, Spievogel D, Apaydin A et al (1999) Surgical treatment of the dilated ascending aorta: when and how? Ann Thorac Surg 67:1834–1839

    Article  PubMed  CAS  Google Scholar 

  27. Brenner DJ, Hall EJ (2007) Computed tomography-An increasing source of radiation exposure. N Engl J Med 357:2277–2284

    Article  PubMed  CAS  Google Scholar 

  28. Preston DL, Ron E, Tokuoka S et al (2007) Solid cancer incidence in atomic bomb survivors: 1958–1998. Radiat Res 168:1–64

    Article  PubMed  CAS  Google Scholar 

  29. Cardis E, Vrijheid M, Blettner M et al (2007) The 15-country collaborative study of cancer risk among radiation workers in the nuclear industry: estimates of radiation-related cancer risks. Radiat Res 167:396–416

    Article  PubMed  CAS  Google Scholar 

  30. Fazel R, Krumholz HM, Wang Y et al (2009) Exposure to low-Dose ionizing radiation from medical imaging procedures. N Engl J Med 361:849–857

    Article  PubMed  CAS  Google Scholar 

  31. Wintersberger B, Jakobs T, Herzog P et al (2005) Aorto-iliac multidetector-row CT angiography with low kV settings: improved vessel enhancement and simultaneous reduction of radiation dose. Eur Radiol 15:334–341

    Article  Google Scholar 

  32. Leschka S, Stolzmann P, Schmid FT et al (2008) Low Kilovoltage cardiac dual-source CT: attenuation, noise and radiation dose. Eur Radiol 18:1809–1817

    Article  PubMed  Google Scholar 

  33. Blanke P, Bulla S, Baumann T et al (2010) Thoracic aorta: prospective electrocardiographically triggered CT angiography with dual-source CT-feasibility, image quality, and dose reduction. Radiology 255:207–217

    Article  PubMed  Google Scholar 

  34. Ioana Mastora I, Martine Remy-Jardin M, Valérie Delannoy V et al (2004) Multi–detector row spiral CT angiography of the thoracic outlet: dose reduction with anatomically adapted online tube current modulation and preset dose savings. Radiology 230:116–1241

    Article  PubMed  Google Scholar 

  35. Primak AN, McCollough CH, Bruesewitzm MR et al (2006) Relationship between noise, dose and pitch in cardiac multi-detector row CT. Radiographics 26:1785–1794

    Article  PubMed  Google Scholar 

  36. Mollet NR, Cademartiri F, van Mieghem CA et al (2005) High-resolution spiral computed tomography coronary angiography in patients referred for diagnostic conventional coronary angiography. Circulation 112:2318–2323

    Article  PubMed  Google Scholar 

  37. Leschka S, Scheffel H, Desbiolles L et al (2007) Image quality and reconstruction intervals of dual-source CT coronary angiography: recommendations for ECG-pulsing windowing. Invest Radiol 42:543–549

    Article  PubMed  Google Scholar 

  38. Kelly DM, Hasegawa I, Borders R et al (2003) High-resolution CT using MDCT: Comparison of degree of motion artifact between volumetric and axial methods. AJR Am J Roentenol 182:757–759

    Google Scholar 

  39. Petersilka M, Bruder H, Krauss B et al (2005) Technical principles of dual source CT. Eur Radiol 68:362–368

    Google Scholar 

Download references

Conflicts of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cormac Farrelly.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Farrelly, C., Davarpanah, A., Keeling, A.N. et al. Low dose dual-source CT angiography of the thoracic aorta. Int J Cardiovasc Imaging 27, 1025–1034 (2011). https://doi.org/10.1007/s10554-010-9742-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10554-010-9742-9

Keywords

Navigation