Skip to main content
Log in

Innovative Solutions Towards Achieving Comprehensive Restoration of Petroleum-Contaminated Soils

  • INNOVATIVE TECHNOLOGIES OF OIL AND GAS
  • Published:
Chemistry and Technology of Fuels and Oils Aims and scope

Composting is an effective and cost-efficient engineering technique used to treat agricultural waste. It involves the conversion of organic materials into stable compounds and the rapid degradation of organic matter through microorganisms found in feces. The resulting high-quality fertilizer can improve soil physical, chemical, and biological properties. However, the excessive use of heavy metals in livestock breeding can restrict the use of livestock manure for composting. Long-term application of compost products containing heavy metals can cause irreversible damage to farmland soil environments. This paper summarizes several important factors that affect the detoxification of heavy metals in composting and discusses the passivation effect of typical heavy metal passivators. The detoxification mechanism of heavy metals in compost is summarized from two perspectives: the humification effect of heavy metals and the environmental interface effects of microorganisms. This paper provides a foundation for improving the agronomic use value of avian manure aerobic composting products and for studying heavy metal passivation in compost. The application of aerobic composting in the remediation of petroleum-contaminated soil exhibits a dual impact, primarily focusing on the synergistic effects on petroleum hydrocarbon degradation and soil improvement. Such research endeavors are poised to offer innovative solutions towards achieving comprehensive restoration of petroleum-contaminated soils.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

References

  1. Raney, T., Steinfeld, H., Skoet, J. The state of food and agriculture 2009: livestock in the balance. Food Agric. Organ. United Nations. 2009.

  2. Zhang, J., Song, H., Chen, Z., et al. Biomineralization mechanism of U(VI) induced by Bacillus cereus 12-2: the role of functional groups and enzymes. Chemosphere., 2018, 206, 682-692.

    Article  CAS  PubMed  Google Scholar 

  3. Carvalho, L., Moss, B. The current status of a sample of english sites of special scientific interest subject to eutrophication. Aquat. Conserv., 1995, 5, 191-204.

    Article  Google Scholar 

  4. Li, J., Xia, C., Cheng, R., et al. Passivation of multiple heavy metals in lead–zinc tailings facilitated by straw biochar-loaded N-doped carbon aerogel nanoparticles: Mechanisms and microbial community evolution. Science of The Total Environment, 2022, 803, 149866.

    Article  CAS  PubMed  Google Scholar 

  5. Wei, J., Wei, Q., Qiang, Z., et al. Evaluation of crop residues and manure production and their geographical distribution in China. J. Cleaner Prod., 2018, 188, 954-965.

    Article  Google Scholar 

  6. Chen, Z., Bao, H., Wen, Q., et al. Effects of H3PO4 modified biochar on heavy metal mobility and resistance genes removal during swine manure composting. Bioresour. Technol., 2022, 346, 126632.

    Article  CAS  PubMed  Google Scholar 

  7. Wijesekara, H., Bolan, N.S., Vithanage, M., et al. Utilization of biowaste for mine spoil rehabilitation. Adv. Agron., 2016, 138, 97-173.

    Article  Google Scholar 

  8. Bernal, M. P., Alburquerque, J. A., Moral, R. Composting of animal manures and chemical criteria for compost maturity assessment. A review. Bioresour. Technol., 2009, 100, 5444-5453.

    Article  CAS  PubMed  Google Scholar 

  9. Bernal, M. P., Paredes, C., Sanchez-Monedero, M. A., et al. Maturity and stability parameters of composts prepared with a wide range of organic wastes. Bioresour. Technol., 1998, 63, 91-99.

    Article  CAS  Google Scholar 

  10. Tuomela, M., Vikman, M., Hatakka, A., et al. Biodegradation of lignin in a compost environment: a review. Bioresour. Technol., 2000, 72, 169-183.

    Article  CAS  Google Scholar 

  11. Wu, S.H., He, H.J., Inthapanya, X., et al. Role of biochar on composting of organic wastes and remediation of contaminated soils-a review. Environ. Sci. Pollut. Res., 2017, 24, 16560-16577.

    Article  CAS  Google Scholar 

  12. Caceres, R., Malinska, K., Marfa, O. Nitrification within composting: A review. Waste Manag., 2018, 72, 119-137.

    Article  CAS  PubMed  Google Scholar 

  13. Zhang, G., Song, K., Huang, Q., et al. Heavy metal pollution and net greenhouse gas emissions in a rice-wheat rotation system as influenced by partial organic substitution. J. Environ. Manage., 2022, 307, 114599.

    Article  CAS  PubMed  Google Scholar 

  14. Luís, G.S., Helena, F., Maria, J.B., et al. Metal-binding proteins and peptides in the aquatic fungi Fontanospora fusiramosa and Flagellospora curta exposed to severe metal stress. Sci. Total Environ., 2006, 372, 148-156.

    Article  Google Scholar 

  15. Morera, M.T., Echeverria, J.C., Mazkiaran, C., et al. Isotherms and sequential extraction procedures for evaluating sorption and distribution of heavy metals in soils. Environ. Pollut., 2001, 113, 135-144.

    Article  CAS  PubMed  Google Scholar 

  16. Li, L., Xu, Z., Wu, J., Tian, G. Bioaccumulation of heavy metals in the earthworm Eisenia fetida in relation to bioavailable metal concentrations in pig manure. Bioresour. Technol., 2010, 101, 3430-3436.

    Article  CAS  PubMed  Google Scholar 

  17. Hsu, J.H., Lo, S.L. Effect of composting on characterization and leaching of copper, manganese, and zinc from swine manure. Environ. Pollut., 2001, 114, 119-127.

    Article  CAS  PubMed  Google Scholar 

  18. Petruzzelli, G., Szymura, I., Lubrano, L., et al. Chemical speciation of heavy metals in different size fractions of compost from solid urban wastes. Environ. Technol. Lett., 1989, 10, 521-526.

    Article  CAS  Google Scholar 

  19. Senesil, G.S., Baldassarre, G., Senesi, N., et al. Trace element inputs into soils by anthropogenic activities and implications for human health. Chemosphere, 1999, 39, 343-377.

    Article  Google Scholar 

  20. Kumpiene, J., Lagerkvist, A., Maurice, C. Stabilization of As, Cr, Cu, Pb and Zn in soil using amendments - A review. Waste Manag., 2008, 28, 215-225.

    Article  CAS  PubMed  Google Scholar 

  21. Merdy, P., Gharbi, L.T., Lucas, Y. Pb, Cu and Cr interactions with soil: Sorption experiments and modelling. Colloids Surf. A Physicochem. Eng. Asp., 2009, 347, 192-199.

    Article  CAS  Google Scholar 

  22. Chikae, M., Ikeda, R., Kerman, K., et al. Estimation of maturity of compost from food wastes and agro-residues by multiple regression analysis. Bioresour. Technol., 2006, 97, 1979-1985.

    Article  CAS  PubMed  Google Scholar 

  23. Wang, S. G., and Zeng, Y. Ammonia emission mitigation in food waste composting: a review. Bioresour. Technol., 2018, 248, 13-19.

    Article  CAS  PubMed  Google Scholar 

  24. Branzini, A., Zubillaga, M. S. Comparative Use of Soil Organic and Inorganic Amendments in Heavy Metals Stabilization. Appl. Environ. Soil Sci., 2012, 2012, 7.

    Article  Google Scholar 

  25. Park, J.H., Lamb, D., Paneerselvam, P., et al. Role of organic amendments on enhanced bioremediation of heavy metal(loid) contaminated soils. J. Hazard. Mater., 2011, 185, 549-574.

    Article  CAS  PubMed  Google Scholar 

  26. Bradl, H. B. Adsorption of heavy metal ions on soils and soils constituents. J. Colloid Interface Sci., 2004, 277, 1-18.

    Article  CAS  PubMed  Google Scholar 

  27. Abdolali, A., Guo, W. S., Ngo, H. H., et al. Typical lignocellulosic wastes and by-products for biosorption process in water and wastewater treatment: A critical review. Bioresour. Technol., 2014, 160, 57-66.

    Article  CAS  PubMed  Google Scholar 

  28. Baker, H., Khalili, F. A study of complexation thermodynamic of humic acid with cadmium (II) and zinc (II) by Schubert’s ion-exchange method. Anal. Chim. Acta, 2005, 542, 240-248.

    Article  CAS  Google Scholar 

  29. Qi, Y., Zhu, J., Fu, Q., et al. Sorption of Cu by humic acid from the decomposition of rice straw in the absence and presence of clay minerals. J. Environ. Manage., 2017, 200, 304-311.

    Article  CAS  PubMed  Google Scholar 

  30. Rau, A.R.P. 2 electrons in a coulomb potential - double-continuum wave functions and threshold law for electron-atom ionization. Phys. Rev. A, 1971, 4, 207.

    Article  Google Scholar 

  31. Zhu, W., W. Du, X. Shen, et al. Comparative adsorption of Pb2+ and Cd2+ by cow manure and its vermicompost. Environ. Pollut., 2017, 227, 89-97.

    Article  CAS  PubMed  Google Scholar 

  32. El-Bayaa, A. A., Badawy, N. A., AlKhalik, E. A. Effect of ionic strength on the adsorption of copper and chromium ions by vermiculite pure clay mineral. J. Hazard. Mater., 2009, 170, 1204-1209.

    Article  CAS  PubMed  Google Scholar 

  33. Liu, L., Chen, H., Cai, P., et al. Immobilization and phytotoxicity of Cd in contaminated soil amended with chicken manure compost. J. Hazard. Mater., 2009, 163, 563-567.

    Article  CAS  PubMed  Google Scholar 

  34. Shuai, L., Wang, X.D., Li-Lan, L.U., et al. Competitive Complexation of Copper and Zinc by Sequentially Extracted Humic Substances from Manure Compost. Agric. Sci. China, 2008, 7, 1253-1259.

    Article  Google Scholar 

  35. Zhu, N. W., C. Y. Deng, Y. Z. Xiong, et al. Performance characteristics of three aeration systems in the swine manure composting. Bioresour. Technol., 2004, 95, 319-326.

    Article  CAS  PubMed  Google Scholar 

  36. Leth, M. C and N Turnover and Lignocellulose Degradation During Composting of Straw And Liquid Pig Manure. Compost Sci. Util., 2001, 9, 186-196.

    Article  Google Scholar 

  37. Zhu, N. W. Effect of low initial C/N ratio on aerobic composting of swine manure with rice straw. Bioresour. Technol., 2007, 98, 9-13.

    Article  CAS  PubMed  Google Scholar 

  38. Nolan, T., Troy, S.M., Healy, M.G., et al. Characterization of compost produced from separated pig manure and a variety of bulking agents at low initial C/N ratios. Bioresour. Technol., 2011, 102, 7131-7138.

    Article  CAS  PubMed  Google Scholar 

  39. Eiland, F., Klamer, M., Lind, A. M., et al. Influence of initial C/N ratio on chemical and microbial composition during long term composting of straw. Microb. Ecol., 2001, 41, 272-280.

    Article  CAS  PubMed  Google Scholar 

  40. Azim, K., Faissal, Y., Soudi, B., et al. Elucidation of functional chemical groups responsible of compost phytotoxicity using solid-state C-13 NMR spectroscopy under different initial C/N ratios. Environ. Sci. Pollut. Res., 2018, 25, 3408-3422.

    Article  CAS  Google Scholar 

  41. Guo, R., Li, G., Jiang, T., et al. Effect of aeration rate, C/N ratio and moisture content on the stability and maturity of compost. Bioresour. Technol., 2012, 112, 171-178.

    Article  CAS  PubMed  Google Scholar 

  42. Clemente, R., Pardo, T., Madejon, P., et al. Food byproducts as amendments in trace elements contaminated soils. Food Res. Int., 2015, 73, 176-189.

    Article  CAS  Google Scholar 

  43. Xu, P., C. X. Sun, X. Z. Ye, et al. The effect of biochar and crop straws on heavy metal bioavailability and plant accumulation in a Cd and Pb polluted soil. Ecotoxicol. Environ. Saf., 2016, 132, 94-100.

    Article  CAS  PubMed  Google Scholar 

  44. Frutos, I., Garcia-Delgado, C., Garate, A., et al. Biosorption of heavy metals by organic carbon from spent mushroom substrates and their raw materials. Int. J. Environ. Sci. Technol., 2016, 13, 2713-2720.

    Article  CAS  Google Scholar 

  45. Tsang, D.C.W., Yip, A.C.K., Olds, W.E., et al. Arsenic and copper stabilisation in a contaminated soil by coal fly ash and green waste compost. Environ. Sci. Pollut. Res., 2014, 21, 10194-10204.

    Article  CAS  Google Scholar 

  46. Garcia-Mina, J. M. Stability, solubility and maximum metal binding capacity in metal-humic complexes involving humic substances extracted from peat and organic compost. Org. Geochem., 2006, 37, 1960-1972.

    Article  CAS  Google Scholar 

  47. Katoh, M., Kitahara, W., Sato, T. Sorption of Lead in Animal Manure Compost: Contributions of Inorganic and Organic Fractions. Water Air Soil Pollut., 2014, 225, 1-12.

    Article  CAS  Google Scholar 

  48. Vargas-García, M.C., López, M.J., Suárez-Estrella, F., et al. Compost as a source of microbial isolates for the bioremediation of heavy metals: in vitro selection. Sci. Total Environ., 2012, 431, 62-67.

    Article  PubMed  Google Scholar 

  49. Liu, H., Zhou, Y., Qin, S., Awasth, S.K., et al. Distribution of heavy metal resistant bacterial community succession in cow manure biochar amended sheep manure compost. Bioresour. Technol., 2021, 125282.

  50. Xu, H., Hong, C., Yao, Y., et al. The process of biotransformation can produce insect protein and promote the effective inactivation of heavy metals. Sci. Total Environ., 2021, 776, 14586.

    Article  Google Scholar 

  51. Vallini, G., Vaccari, F., Pera, A., et al. Evaluation of cocomposted coal fly ash on dynamics of microbial populations and heavy metal uptake. Compost Sci. Util., 1999, 7, 81-90.

    Article  Google Scholar 

  52. Baker, L. Changes in microbial properties after manure, lime, and bentonite application to a heavy metal-contaminated mine waste. Appl. Soil Ecol., 2011, 48, 1-10.

    Article  Google Scholar 

  53. Schützendübel, A., Polle, A. Plant responses to abiotic stresses: heavy metal-induced oxidative stress and protection by mycorrhization. J. Exp. Bot., 2002, 53, 1351-1365.

    PubMed  Google Scholar 

  54. Liang, Z., Guan, Y., Shan, C., et al. Whole Cells Imaged by Hard X-ray Transmission Microscopy.

  55. Zhu, J.Y., Meeusen, J., Krezoski, S., et al. Reactivity of Zn-, Cd-, and apo-metallothionein with nitric oxide compounds: in vitro and cellular comparison. Chem. Res. Toxicol., 2010, 23, 422.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Sun, F., and Shao, Z. Biosorption and bioaccumulation of lead by Penicillium sp. Psf-2 isolated from the deep sea sediment of the Pacific Ocean. Extremophiles, 2007, 11, 853-858.

  57. Leitão, A.L. Potential of Penicillium Species in the Bioremediation Field. Int. J. Environ. Res. Public Health, 2009, 6, 1393-1417.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Cui, H., Ou, Y., Wang, L., et al. Critical passivation mechanisms on heavy metals during aerobic composting with different grain-size zeolite. Journal of Hazardous Materials, 2020, 406, 124313.

    Article  PubMed  Google Scholar 

  59. Hoang, S. A., Sarkar, B., Seshadri, B., et al. Mitigation of petroleum-hydrocarbon-contaminated hazardous soils using organic amendments: a review. Journal of Hazardous Materials, 2021б 416, 125702.

  60. Vilgerts, J., Timma, L., Blumberga, A., et al. Application of system dynamic model for the composting of petroleum contaminated soil under various policies. Agronomy Research, 2013, 11(2), 391-404.

    Google Scholar 

  61. Brassard, P., Godbout, S., Raghavan, V. Soil biochar amendment as a climate change mitigation tool: key parameters and mechanisms involved. Journal of environmental management, 2016, 181, 484-497.

    Article  CAS  PubMed  Google Scholar 

  62. Ambaye, T. G., Chebbi, A., Formicola, F., et al. Ex-situ bioremediation of petroleum hydrocarbon contaminated soil using mixed stimulants: Response and dynamics of bacterial community and phytotoxicity. Journal of Environmental Chemical Engineering, 2022, 10(6), 108814.

    Article  CAS  Google Scholar 

  63. Nie, M., Wang, Y., Yu, J., et al. Understanding plant-microbe interactions for phytoremediation of petroleum-polluted soil. PloS one, 2011, 6(3), e17961.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Larney, F. J., Angers, D. A. The role of organic amendments in soil reclamation: A review. Canadian Journal of Soil Science, 2012, 92(1), 19-38.

    Article  CAS  Google Scholar 

  65. Lwin, C. S., Seo, B. H., Kim, H. U., et al. Application of soil amendments to contaminated soils for heavy metal immobilization and improved soil quality – A critical review. Soil science and plant nutrition, 2018, 64(2), 156-167.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fang Shen.

Additional information

Translated from Khimiya i Tekhnologiya Topliv i Masel, No. 2, pp. 68–72, March– April, 2024.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shen, F., Feng, Y., Di, Y. et al. Innovative Solutions Towards Achieving Comprehensive Restoration of Petroleum-Contaminated Soils. Chem Technol Fuels Oils 60, 288–296 (2024). https://doi.org/10.1007/s10553-024-01683-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10553-024-01683-0

Keywords

Navigation