Skip to main content
Log in

Corrosivity of Wood Vinegar in Bio-Oil from Hazelnut Shells

  • INNOVATIVE TECHNOLOGIES OF OIL AND GAS
  • Published:
Chemistry and Technology of Fuels and Oils Aims and scope

Wood vinegar (WV) is the one of the primary liquid products of biomass pyrolysis, and applied as a sustainable chemical in industry and agriculture. The present work focused on the corrosivity of WV obtained from hazelnut shells pyrolysis to provide more sufficient premise reference for better application. It is found that, the optimal temperature for maximum WV yield (31.23 wt.%) was located at 700°C, the higher temperature (>700°C) was not conducive to the generation of WV, the low pH was important quality for WV, the average value of pH was 2.89 in the all selected temperatures, this is mainly attribute to the high content of phenols and acids in WV by gas chromatography-mass spectrometry technology, and phenols were the most important components, and accounted for above 41.17 wt.% in WV. Corrosive experiments showed that WV had the weaker corrosiveness than the typical formic acid, it was supported by the comparative result on the roughness, hardness, and tensile strength of the rubbers soaked in WV and formic acid, and the corrosivity decreased first and then increased with the increase of preparation temperature of WV, the WV prepared at 900 °C had the weakest corrosiveness, it revealed that the corrosivity of WV mainly were affected by the content of acids in WV, and more phenols supported the lower pH and lower corrosivity of WV, phenols were acidity similar to acids, the corrosivity were significantly less than acids.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

References

  1. A. Grewal, L. Abbey, L.R., Gunupuru, Journal of analytical and applied pyrolysis, 135, 152-159 (2018).

  2. M. Hagner, O.P. Penttinen, K. Tiilikkala, et al., European journal of soil biology, 58, 1-7 (2013).

    Article  CAS  Google Scholar 

  3. J. Chen, J.H. Wu, H.P. Si, et al., Journal of Plant Nutrition, 39, 456-462 (2016).

    Article  CAS  Google Scholar 

  4. Z. Li, L. Zhang, G. Chen, et al., Process biochemistry, 75, 194-201 (2018).

    Article  CAS  Google Scholar 

  5. İ. Koç, E. Öğün, A. Namlı, et al., Fresenius Environmental Bulletin, 28, 2747-2753 (2019).

    Google Scholar 

  6. A.M. Sayed, R.W. Behle, K. Tiilikkala, et al., Pesticidi i fitomedicina, 33, 39-52 (2018).

    Article  CAS  Google Scholar 

  7. R. Xue, E.L. Cui, G.Q. Hu, et al., Industrial Crops & Products, 178, 114586 (2022).

    Article  CAS  Google Scholar 

  8. H. Desvita, and M. Faisal, Materials Today: Proceedings, 63, S210-S213 (2022).

    CAS  Google Scholar 

  9. S.S. Lee, B.J. Ahn, S.T. Cho, Journal of the Korean Wood Science and Technology, 38, 341-348 (2010).

    Google Scholar 

  10. İ. Koc, E. Ögun, A. Namli, et al., Applied Ecology and Environmental Research, 17, 2437-2447 (2019).

    Article  Google Scholar 

  11. C.Y. Ju and G.S. Wan, Journal of Life Science, 17, 105-109 (2007).

    Article  Google Scholar 

  12. H.X. Wang, A. Gross, J. Liu, Chemical Engineering Journal, 433, 133692 (2022).

    Article  CAS  Google Scholar 

  13. M. Bertero, H.A. Gorostegui, C.J. Orrabalis, et aL., Fuel, 116, 409-414 (2014).

    Article  CAS  Google Scholar 

  14. H.P. Yang, R. Coolman, P. Karanjkar, et al., Green Chemistry, 19, 286-297 (2017).

    Article  CAS  Google Scholar 

  15. S. Xia, K. Li, H. Xiao, et al., Bioresource technology, 287, 121444 (2019).

    Article  CAS  PubMed  Google Scholar 

  16. S. Stegen and P. Kaparaju, Fuel, 276, 118112 (2020).

    Article  CAS  Google Scholar 

  17. L. Qin, Y. Shao, Z. Hou, et al., Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 42, 2831-2843 (2020).

    CAS  Google Scholar 

  18. A.E.M. Fodah, M.K. Ghosal, D. Behera, International Journal of Energy Research, 45, 5679-5694 (2021).

    Article  CAS  Google Scholar 

  19. S.J. Kim, S.H. Jung, J.S. Kim, Bioresource technology, 101, 9294-9300 (2010).

    Article  CAS  PubMed  Google Scholar 

  20. A. Demirbas, Journal of analytical and applied pyrolysis, 76, 285–289 (2006).

    Article  CAS  Google Scholar 

  21. R. Kadir, M. Sarif Mohd Ali, S.N. Kartal, European Journal of Wood and Wood Products, 80, 45-56 (2022).

  22. S.C. Hu, J. Cheng, W.P. Wang, Energy, 239, 121918 (2022).

    Article  CAS  Google Scholar 

  23. Q. Wei, X. Ma, J. Dong, Journal of analytical and applied pyrolysis, 87, 24-28 (2010).

    Article  CAS  Google Scholar 

  24. J. L. Aguirre, J. Baena, M.T. Martín, et al., Energies, 13, 2418 (2020).

    Article  CAS  Google Scholar 

  25. Q. Zhang, J. Chang, T. Wang, et al., Energy conversion and management, 48, 87-92 (2007).

    Article  CAS  Google Scholar 

  26. V. Chiodo, G. Zafarana, S. Maisano, et al., Fuel, 164, 220-227 (2016).

    Article  CAS  Google Scholar 

  27. C.X. Zhao, E.C. Jiang, A.H. Chen, Journal of the Energy Institute, 90, 902–913 (2017).

    Article  CAS  Google Scholar 

  28. S. Mathew, Z.A. Zakaria, N.F. Musa, Process Biochemistry, 50, 1985–1992 (2015).

    Article  CAS  Google Scholar 

  29. J.E. Omoriyekomwan, A. Tahmasebi, J. Yu, Bioresource technology, 207, 188-196 (2016).

    Article  CAS  PubMed  Google Scholar 

  30. Q. Lu, W.Z. Li, X.F. Zhu, Energy conversion and management, 50, 1376-1383 (2009).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was funded by the Natural Science Foundation of Heilongjiang Province of China (grant number: LH2020F010), and Harbin Science and Technology Plan Project (grant number: ZC2022ZJ006006).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bing Dai.

Additional information

Translated from Khimiya i Tekhnologiya Topliv i Masel, No. 3, pp. 102–107 May – June, 2023.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dai, B., Ding, Z. Corrosivity of Wood Vinegar in Bio-Oil from Hazelnut Shells. Chem Technol Fuels Oils 59, 551–560 (2023). https://doi.org/10.1007/s10553-023-01555-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10553-023-01555-z

Keywords

Navigation