Skip to main content

Advertisement

Log in

Synthesis and Investigation of Nickel–Aluminum Catalyst for Treatment of Heavy Oil Residue

  • KINETICS AND CATALYSIS
  • Published:
Chemistry and Technology of Fuels and Oils Aims and scope

The structural characteristics of catalytic systems obtained by modification of activated carbon with Al and Ni metal oxides were studied. The activated carbon was modified by impregnation with metal hydroxides from solutions of salts with Ni+2/Al+3 ratios of 2:1 and 3:1 followed by calcination in a stream of nitrogen and hydrogen until oxide phases were formed. With increase in the ratio of metal cations in the impregnating solution in activated carbon the specific surface area and the number of micropores increase while the total volume and average diameter of the pores decrease. Calcination in a stream of hydrogen at the concluding stage of modification of the activated carbon leads to decrease of the pore space and decrease of the specific surface area of the catalytic system. The Ni/Al (2:1) catalytic systems obtained in nitrogen and hydrogen have the optimum combination of specific surface values and maximum average pore diameters for the treatment of heavy oil residue.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.

Similar content being viewed by others

References

  1. M. Erturk, Renewable and Sustainable Energy Reviews, 15, No. 6, 2766-2771 (2011).

    Article  Google Scholar 

  2. S. H. Hosseini, G. H. Shakouri, Energy Policy, 91, 64-74 (2016).

    Article  Google Scholar 

  3. D. L. Greene, J. L. Hopson, J. Li, Energy Policy, 34, No. 5, 515-531 (2006).

    Article  Google Scholar 

  4. S. M. Petrov, Chemistry and Technology of Fuels and Oils, 57, No. 6, 895-900 (2022).

    Article  CAS  Google Scholar 

  5. A. G. Safiulina, R. R. Zabbarov, S. I. Khusnutdinov, et al., Chemistry and Technology of Fuels and Oils, (2018) 54, No. 3, 265-270 (2018).

  6. J. Laherrere, C. A. S. Hall, R. Bentley, Current Research in Environmental Sustainability, 4, 100174 (2022).

    Article  Google Scholar 

  7. S. H. Mohr, G. M. Evans, Energy Policy, 38, No. 1, 265-276 (2010).

    Article  Google Scholar 

  8. F. Zhao, Y. Liu, N. Lu, et al., Energy Reports, 7, 4249-4272 (2021).

    Article  Google Scholar 

  9. R. O. Caniaz, S. Arca, M. Yaşar, et al., The Journal of Supercritical Fluids, 152, 1-10 (2019).

    Article  Google Scholar 

  10. J. Ancheyta, M. S. Rana, V. Sa, et al., Fuel, 86, 1216-1231 (2007).

    Article  Google Scholar 

  11. H. C. Lee, S. K. Park, Applied Chemistry for Engineering, 27, 343-352 (2016).

    Article  CAS  Google Scholar 

  12. N. N. Petrukhina, G. P. Kayukova, G. V. Romanov, et al., Chemistry and Technology of Fuels and Oils, 4, 30-37 (2014).

    Google Scholar 

  13. A. Mejean, C. Hope, Energy Policy, 60, 27-40 (2013).

    Article  CAS  Google Scholar 

  14. S. M. Petrov, D. A. Ibragimova, Y. I. I. Abdelsalam, et al., Petroleum Chemistry, 56. No. 1, 21-26 (2016).

    Article  CAS  Google Scholar 

  15. I. N. Zaidullin, A. N. Pitsenko, A. G. Safiulina, et al., Chemistry and Technology of Fuels and Oils, 54, No. 5, 550-556 (2018).

    Article  CAS  Google Scholar 

  16. A. G. Safiulina, M. Abaas, A. I. Lakhova, et al., International Multidisciplinary Scientific GeoConference Surveying Geology and Mining Ecology Management, SGEM, 18, 405-412 (2018).

  17. A. Nosova, S. Petrov, A. Safiulina, et al., Petroleum Science and Technology, 36, No. 13, 1001-1006 (2018).

    Article  CAS  Google Scholar 

  18. S. M. Petrov, D. A. Ibragimova, A. G. Safiulina, et al., Journal of Petroleum Science and Engineering, 159, 497-505 (2017).

    Article  CAS  Google Scholar 

  19. S. M. Petrov, G. P. Kayukova, A. I. Lakhova, et al., Chemistry and Technology of Fuels and Oils, 52, No. 5, 619-625 (2016).

    Article  CAS  Google Scholar 

  20. M. J. Angeles, C. Leyva, J. Ancheyta, et al., Catalysis Today, 220-222, 274-294 (2014).

    Article  Google Scholar 

  21. O. Muraza, A. Galadima, Fuel, 157, 219-231 (2015).

    Article  CAS  Google Scholar 

  22. E. G. Moiseeva, A. I. Lakhova, S. M. Petrov, et al., Chemistry and Technology of Fuels and Oils, 57, No. 5, 746-752 (2021).

    Article  CAS  Google Scholar 

  23. L. E. Foss, G. P. Kayukova, B. P. Tumanyan, et al., Chemistry and Technology of Fuels and Oils, 2, 19-23 (2017).

    Google Scholar 

  24. G. P. Kayukova, V. P. Morozov, R. R. Islamova, et al., Chemistry and Technology of Fuels and Oils, 51, No. 1, 117-126 (2015).

    Article  CAS  Google Scholar 

  25. A. I. Lakhova, S. M. Petrov, N. Y. Bashkirtseva, Chemistry and Technology of Fuels and Oils, 58, No. 1, 1-5 (2022).

    Article  CAS  Google Scholar 

  26. J. Li, Y. Chen, H. Liu, et al., Energy & Fuels, 27, No. 5, 2555-2562 (2013).

    Article  CAS  Google Scholar 

  27. A. Lakhova, A. Valieva, A. Nosova, et al., IOP Conference Series: Earth and Environmental Science, 516, 12041.

  28. S. M. Petrov, A. G. Safiulina, N. Y. Bashkirtseva, et al., Processes, 9, No. 2, 256 (2021).

    Article  CAS  Google Scholar 

  29. G. P. Kayukova, A. T. Gubaidullin, S. M. Petrov et al., Energy & Fuels, 30, No. 2, 773-783 (2016).

    Article  CAS  Google Scholar 

  30. A. I. Lakhova, A. G. Safiulina, G. G. Islamova, et al., Process, 9, 553 (2021).

    Article  CAS  Google Scholar 

  31. E. G. Moiseeva, A. S. Il’menskii, K. A. Mishagin, et al., Chemistry and Technology of Fuels and Oils, 58, No. 2, 283-288 (2022).

  32. O. Morelos-Santos, A. I. Reyes de la Torre, J. A. Melo-Banda, et al., Catalysis Today, 392-393, 60-71 (2022).

    Article  Google Scholar 

  33. M. A. Suwaid, M. A. Varfolomeev, A. A. Al-Muntaser, et al., Fuel, 312, 122914 (2022).

    Article  CAS  Google Scholar 

  34. C. Li, W. Huang, C. Zhou, et al., Fuel, 257, 115779 (2019).

    Article  CAS  Google Scholar 

  35. L. R. Baibekova, S. M. Petrov, I. I. Mukhamatdinov, et al., International Journal of Applied Chemistry, 11, No. 5, 593-599 (2015).

    Google Scholar 

  36. M. R. Gray, H. W. Yarranton, M. L. Chacon-Patiño, et al., Energy and Fuels, 35, No. 22, 18078-18103 (2021).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The investigation was conducted using equipment of the Center of Complex Program «Nanomaterials and Nanotechnologies» of the Kazan National Research Technological University.

The research was conducted out of the Russian Science Foundation Grant No. 18-77-10023, https://rscf.ru/project/18-77-10023/

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. G. Moiseeva.

Additional information

Translated from Khimiya i Tekhnologiya Topliv i Masel, No. 1, pp. 25–28 January–February, 2023.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Moiseeva, E.G., Maksumova, R.R., Petrov, S.M. et al. Synthesis and Investigation of Nickel–Aluminum Catalyst for Treatment of Heavy Oil Residue. Chem Technol Fuels Oils 59, 28–32 (2023). https://doi.org/10.1007/s10553-023-01498-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10553-023-01498-5

Keywords

Navigation