Skip to main content
Log in

Biochemical Sensors Based on Graphene and Its Composites

  • INNOVATIVE TECHNOLOGIES OF OIL AND GAS
  • Published:
Chemistry and Technology of Fuels and Oils Aims and scope

Graphene is a two-dimensional carbon nanomaterial. It consists of a planar film composed of carbon atoms with sp2 hybrid orbitals, which is hexagonal and honeycomb in shape. The thickness of graphene is only 0.34 nm, and the unique two-dimensional lattice and electron structure of graphene also makes it possess excellent physical and chemical properties. When the traditional carbon material cannot detect some substances with very similar oxidation potential or some at ultra-trace level, the emergence of graphene replaces the traditional carbon material and provides the possibility for the preparation of biochemical sensors that can measure the above substances, which has a very broad development prospect. Based on the excellent properties of graphene, this paper starts from four common biochemical substances in daily life, including explosives, pesticides, pathogens and toxins and introduces the principle and effects of various biochemical sensors based on graphene and its composites for these four substances. Finally, the future development trend is prospected.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

References

  1. Guo C X, Li C M. A self-assembled hierarchical nanostructure comprising carbon spheres and graphene nanosheets for enhanced supercapacitor performance [J]. Energy & Environmental Science, 2011, 4(11): 4504-4507.

    Article  CAS  Google Scholar 

  2. Pumera M. Graphene-based nano materials for energy storage [J]. Energy&Environmental Science, 2011, 4(3):668-674.

    CAS  Google Scholar 

  3. Brownson DAC, Kampouris DK, Banks CE. An overview of graphene in energy production and storage applications [J]. Journal of Power Sources, 2011, 196(11):4873-4885.

    Article  CAS  Google Scholar 

  4. Shang N G, Papakonstantinou P, McMullan M, et al. Catalyst-free efficient growth, orientation and biosensing properties of multilayer graphene nanoflake films with sharp edge planes [J]. Advanced functional materials, 2008, 18(21): 3506-3514.

    Article  CAS  Google Scholar 

  5. Novoselov K S, Geim A K, Morozov S V, et al. Electric field effect in atomically thin carbon films [J]. Science, 2004, 306(5696): 666-669.

    Article  CAS  PubMed  Google Scholar 

  6. Novoselov K S, Geim A K, Morozov S V, et al. Two-dimensional gas of massless Dirac fermions in graphene [J]. Nature, 2005, 438(7065): 197-200.

    Article  CAS  PubMed  Google Scholar 

  7. Morozov S V, Novoselov K S, Katsnelson M I, et al. Giant intrinsic carrier mobilities in graphene and its bilayer [J]. Physical review letters, 2008, 100(1): 016602.

    Article  CAS  PubMed  Google Scholar 

  8. Balandin A A, Ghosh S, Bao W, et al. Superior thermal conductivity of single-layer graphene [J]. Nano letters, 2008, 8(3): 902-907.

    Article  CAS  PubMed  Google Scholar 

  9. Margine E R, Bocquet M L, Blase X. Thermal stability of graphene and nanotube covalent functionalization [J]. Nano letters, 2008, 8(10): 3315-3319.

    Article  CAS  PubMed  Google Scholar 

  10. Lee C, Wei X, Kysar JW, etal. Measurement of the elastic properties and intrinsic strength of monolayer graphene [J]. science, 2008, 321(5887):385-388.

  11. Ding R, Li W, Wang X, et al. A brief review of corrosion protective films and coatings based on graphene and graphene oxide [J]. Journal of Alloys and Compounds, 2018, 764: 1039-1055.

    Article  CAS  Google Scholar 

  12. Lu Shu-hua, Wang Yin-wen. Developments in [J]. Spectroscopy and Spectral Analysis, 2018, 38(05):1412-1419.

    Google Scholar 

  13. Guo L, Yang Z, Dou X. Artificial olfactory system for trace identification of explosive vapors realized by optoelectronic Schottky sensing [J]. Advanced materials (Deerfield Beach Fla.), 2017, 29(5).

  14. Tang L, Feng H, Cheng J, et al. Uniform and rich-wrinkled electrophoretic deposited graphene film: a robust electrochemical platform for TNT sensing [J]. Chemical communications, 2010, 46(32): 5882-5884.

    Article  CAS  PubMed  Google Scholar 

  15. Li J, Kuang D, Feng Y, et al. A graphene oxide-based electrochemical sensor for sensitive determination of 4-nitrophenol [J]. Journal of hazardous materials, 2012, 201: 250-259.

    Article  PubMed  Google Scholar 

  16. Goh M S, Pumera M. Graphene-based electrochemical sensor for detection of 2, 4, 6-trinitrotoluene (TNT) in seawater: the comparison of single-, few-, and multilayer graphene nanoribbons and graphite microparticles [J]. Analytical and bioanalytical chemistry, 2011, 399(1): 127-131.

    Article  CAS  PubMed  Google Scholar 

  17. Li H, Mehler W T, Lydy M J, et al. Occurrence and distribution of sediment-associated insecticides in urban waterways in the Pearl River Delta, China [J]. Chemosphere, 2011, 82(10): 1373-1379.

    Article  CAS  PubMed  Google Scholar 

  18. Wu Xiaoxiao, Mei Xiuming, Jiang Diyao, Xu Jingjing, Zhang Chi. Progress on Application of Carbon Nanomaterials in Sample Pretreatment for Organophosphorus Pesticide Detection [J]. Food Science and Technology, 2022, 47(03):318-323.

    Google Scholar 

  19. Handbook of carbon nano materials [M]. World Scientific, 2012.

  20. Cremisini C, Di Sario S, Mela J, et al. Evaluation of the use of free and immobilised acetylcholinesterase for paraoxon detection with an amperometric choline oxidase based biosensor [J]. Analytica Chimica Acta, 1995, 311(3): 273-280.

    Article  CAS  Google Scholar 

  21. Vidal J C, Esteban S, Gil J, et al. A comparative study of immobilization methods of a tyrosinase enzyme on electrodes and their application to the detection of dichlorvos organophosphorus insecticide [J]. Talanta, 2006, 68(3): 791-799.

    Article  CAS  PubMed  Google Scholar 

  22. Liu T, Xu M, Yin H, et al. A glassy carbon electrode modified with graphene and tyrosinase immobilized on platinum nanoparticles for sensing organophosphorus pesticides [J]. Microchimica Acta, 2011, 175(1): 129-135.

    Article  CAS  Google Scholar 

  23. Gong J, Miao X, Zhou T, et al. An enzymeless organophosphate pesticide sensor using Au nanoparticle-decorated graphene hybrid nanosheet as solid-phase extraction [J]. Talanta, 2011, 85(3): 1344-1349.

    Article  CAS  PubMed  Google Scholar 

  24. Wang Y, Zhang S, Du D, et al. Self assembly of acetylcholinesterase on a gold nanoparticles–graphene nanosheet hybrid for organophosphate pesticide detection using polyelectrolyte as a linker [J]. Journal of Materials Chemistry, 2011, 21(14): 5319-5325.

    Article  CAS  Google Scholar 

  25. Zhang L, Zhang A, Du D, et al. Biosensor based on Prussian blue nanocubes/reduced graphene oxide nanocomposite for detection of organophosphorus pesticides [J]. Nanoscale, 2012, 4(15): 4674-4679.

    Article  CAS  PubMed  Google Scholar 

  26. Darvishnejad F, Raoof J B, Ghani M. MIL-101 (Cr)@ graphene oxide-reinforced hollow fiber solid-phase microextraction coupled with high-performance liquid chromatography to determine diazinon and chlorpyrifos in tomato, cucumber and agricultural water [J]. Analytica Chimica Acta, 2020, 1140: 99-110.

    Article  CAS  PubMed  Google Scholar 

  27. Jung J H, Cheon D S, Liu F, et al. A graphene oxide based immuno-biosensor for pathogen detection [J]. Angewandte Chemie, 2010, 122(33): 5844-5847.

    Article  Google Scholar 

  28. Robinson J T, Perkins F K, Snow E S, et al. Reduced graphene oxide molecular sensors [J]. Nano letters, 2008, 8(10): 3137-3140.

    Article  CAS  PubMed  Google Scholar 

  29. Huang Y, Dong X, Liu Y, et al. Graphene-based biosensors for detection of bacteria and their metabolic activities [J]. Journal of Materials Chemistry, 2011, 21(33): 12358-12362.

    Article  CAS  Google Scholar 

  30. Wan Y, Lin Z, Zhang D, et al. Impedimetric immunosensor doped with reduced graphene sheets fabricated by controllable electrodeposition for the non-labelled detection of bacteria [J]. Biosensors and Bioelectronics, 2011, 26(5): 1959-1964.

    Article  CAS  PubMed  Google Scholar 

  31. Ono T, Kanai Y, Inoue K, et al. Electrical biosensing at physiological ionic strength using graphene field-effect transistor in femtoliter microdroplet [J]. Nano Letters, 2019, 19(6): 4004-4009.

    Article  CAS  PubMed  Google Scholar 

  32. Liu Xiaobo, Kou Zongkui, Mu Shichun. Porous Graphene Materials [J]. Progress in Chemistry ,2015,27(11):1566.

    Google Scholar 

  33. Shi J J, Zhu J J. Sonoelectrochemical fabrication of Pd-graphene nanocomposite and its application in the determination of chlorophenols [J]. Electrochimica acta, 2011, 56(17): 6008-6013.

    Article  CAS  Google Scholar 

  34. Busca G, Berardinelli S, Resini C, et al. Technologies for the removal of phenol from fluid streams: a short review of recent developments [J]. Journal of hazardous materials, 2008, 160(2-3): 265-288.

    Article  CAS  PubMed  Google Scholar 

  35. Kim T H, Lee B Y, Jaworski J, et al. Selective and sensitive TNT sensors using biomimetic polydiacetylene-coated CNTFETs [J]. ACS nano, 2011, 5(4): 2824-2830.

    Article  CAS  PubMed  Google Scholar 

  36. Snow E S, Perkins F K, Houser E J, et al. Chemical detection with a single-walled carbon nanotube capacitor [J]. Science, 2005, 307(5717): 1942-1945.

    Article  CAS  PubMed  Google Scholar 

  37. Robinson J A, Snow E S, Perkins F K. Improved chemical detection using single-walled carbon nanotube network capacitors [J]. Sensors and Actuators A: Physical, 2007, 135(2): 309-314.

    Article  CAS  Google Scholar 

  38. Kong L, Wang J, Fu X, et al. p-Hexafluoroisopropanol phenyl covalently functionalized single-walled carbon nanotubes for detection of nerve agents [J]. Carbon, 2010, 48(4): 1262-1270.

    Article  CAS  Google Scholar 

  39. Kuang Z, Kim S N, Crookes-Goodson W J, et al. Biomimetic chemosensor: designing peptide recognition elements for surface functionalization of carbon nanotube field effect transistors [J]. ACS nano, 2010, 4(1): 452-458.

    Article  CAS  PubMed  Google Scholar 

  40. Park M, Cella L N, Chen W, et al. Carbon nanotubes-based chemiresistive immunosensor for small molecules: Detection of nitroaromatic explosives [J]. Biosensors and Bioelectronics, 2010, 26(4): 1297-1301.

    Article  CAS  PubMed  Google Scholar 

  41. Robinson J T, Perkins F K, Snow E S, et al. Reduced graphene oxide molecular sensors [J]. Nano letters, 2008, 8(10): 3137-3140.

    Article  CAS  PubMed  Google Scholar 

  42. Wu C, Sun D, Li Q, et al. Electrochemical sensor for toxic ractopamine and clenbuterol based on the enhancement effect of graphene oxide [J]. Sensors and Actuators B: Chemical, 2012, 168: 178-184.

    Article  CAS  Google Scholar 

  43. Shen Youming, Nie Jiyun, Li Zhixia, Li Haifei, Wu Yonglong, Zhang Jianyi. Progress in Research on Mycotoxins Contamination, Toxicity, Biosynthesis and Regulatory Factors of Mycotoxins in Fruits [J]. Food Science,2018,39(09):294-304.

    Google Scholar 

  44. Hauhan R, Singh J, Sachdev T, et al. Recent advances in mycotoxins detection [J]. Biosensors and Bioelectronics, 2016, 81: 532-545.

    Article  Google Scholar 

  45. Ma Haihua, Zhang Yuan, Zhen Tong, Sun Jizhou, Xia Shanhong. Recent developments and applications of Electrochemical Biosensors for Aflatoxins Detection [J]. Journal of the Chinese Cereals and Oils Association 2016,31(02):132-140.

    Google Scholar 

  46. Wang Qi, Yang Qingli, Wu Wei. A Graphene Oxide-Based Fluorescent Aptasensor for Determination of Mycotoxins in Foods [J]. Food Science,2021,42(24):318-322.

    Google Scholar 

  47. Srivastava S, Abraham S, Singh C, et al. Protein conjugated carboxylated gold@ reduced graphene oxide for aflatoxin B1 detection [J]. RSC Advances, 2015, 5(7): 5406-5414.

    Article  CAS  Google Scholar 

  48. Yin Long-jing, Qiao Jia-bin, He Lin. Structures and Electronic properties of Twisted Bilayer Graphene [J]. Progress in Physics,2016,36(03):65-99.

    Google Scholar 

  49. Ye R, James D K, Tour J M. Laser-induced graphene [J]. Accounts of chemical research, 2018, 51(7): 1609-1620.

    Article  CAS  PubMed  Google Scholar 

  50. Dosi M, Lau I, Zhuang Y, et al. Ultrasensitive electrochemical methane sensors based on solid polymer electrolyte-infused laser-induced graphene [J]. ACS applied materials & interfaces, 2019, 11(6): 6166-6173.

    Article  CAS  Google Scholar 

  51. Chhetry A, Sharifuzzaman M, Yoon H, et al. MoS2-decorated laser-induced graphene for a highly sensitive, hysteresisfree, and reliable piezoresistive strain sensor [J]. ACS applied materials & interfaces, 2019, 11(25): 22531-22542.

    Article  CAS  Google Scholar 

  52. Stanford M G, Yang K, Chyan Y, et al. Laser-induced graphene for flexible and embeddable gas sensors [J]. ACS nano, 2019, 13(3): 3474-3482.

    Article  CAS  PubMed  Google Scholar 

  53. Yuan W, Shi G. Graphene-based gas sensors [J]. Journal of Materials Chemistry A, 2013, 1(35): 10078-10091.

    Article  CAS  Google Scholar 

  54. Nag A, Mukhopadhyay S C, Kosel J. Sensing system for salinity testing using laser-induced graphene sensors [J]. Sensors and Actuators A: Physical, 2017, 264: 107-116.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yixiao Wang.

Additional information

Translated from Khimiya i Tekhnologiya Topliv i Masel, No. 4, pp. 108–113 July –August, 2022.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., He, W. Biochemical Sensors Based on Graphene and Its Composites. Chem Technol Fuels Oils 58, 717–724 (2022). https://doi.org/10.1007/s10553-022-01439-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10553-022-01439-8

Keywords

Navigation