Skip to main content

Graphene-Based Composite Materials for Chemical Sensor Application

  • Chapter
Electrospinning for High Performance Sensors

Part of the book series: NanoScience and Technology ((NANO))

Abstract

This book chapter reports a comprehensive review of graphene-based composite materials for application in chemical sensors. Recently, the attractive electrical and physical properties of graphene-based materials, i.e., graphite, graphene oxide, and reduced graphene oxide, have stimulated in-depth studies of chemical sensors which exhibit interesting sensing capabilities. For a further improvement in their chemical-sensing performances, graphene-based materials were functionalized with different types of nanostructured sensing layers, such as nanoparticles (NPs), nanorods (NRs), and nanofibers (NFs) prepared with various materials such as metals, metal oxides, and polymers. A number of synthetic methods to obtain graphene-based composite sensing layers were introduced, and they were categorized according to the materials and structures involved. In addition, we summarize recent promising progress in the area of chemical sensor applications with graphene-based composite materials, highlighting important sensing performance, such as those related to sensitivity (response), selectivity, response/recovery times, detection limits, and operating temperatures. Furthermore, potential sensing mechanisms are thoroughly analyzed in an effort to understand the characteristic sensing properties of graphene-based composite sensors. Finally, future perspectives on the development of graphene-based composite materials are discussed with regard to the realization of high-performance chemical sensors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. F. Schedin, A.K. Geim, S.V. Morozov, E.W. Hill, P. Blake, M.I. Katsnelson, K.S. Novoselov, Detection of individual gas molecules adsorbed on graphene. Nat. Mater. 6(9), 652–655 (2007)

    Article  Google Scholar 

  2. Q.Y. He, S.X. Wu, Z.Y. Yin, H. Zhang, Graphene-based electronic sensors. Chem. Sci. 3(6), 1764–1772 (2012)

    Article  Google Scholar 

  3. F. Yavari, N. Koratkar, Graphene-based chemical sensors. J. Phys. Chem. Lett. 3(13), 1746–1753 (2012)

    Article  Google Scholar 

  4. S. Basu, P. Bhattacharyya, Recent developments on graphene and graphene oxide based solid state gas sensors. Sens. Actuators B 173, 1–21 (2012)

    Article  Google Scholar 

  5. W.J. Yuan, G.Q. Shi, Graphene-based gas sensors. J. Mater. Chem. A 1(35), 10078–10091 (2013)

    Article  Google Scholar 

  6. S.M. Hafiz, R. Ritikos, T.J. Whitcher, N.M. Razib, D.C.S. Bien, N. Chanlek, H. Nakajima, T. Saisopa, P. Songsiriritthigul, N.M. Huang, S.A. Rahman, A practical carbon dioxide gas sensor using room-temperature hydrogen plasma reduced graphene oxide. Sens. Actuators B 193, 692–700 (2014)

    Article  Google Scholar 

  7. N.T. Hu, Z. Yang, Y.Y. Wang, L.L. Zhang, Y. Wang, X.L. Huang, H. Wei, L.M. Wei, Y.F. Zhang, Ultrafast and sensitive room temperature NH3 gas sensors based on chemically reduced graphene oxide. Nanotechnology 25(2), 025502 (2014)

    Article  Google Scholar 

  8. A. Lipatov, A. Varezhnikov, P. Wilson, V. Sysoev, A. Kolmakov, A. Sinitskii, Highly selective gas sensor arrays based on thermally reduced graphene oxide. Nanoscale 5(12), 5426–5434 (2013)

    Article  Google Scholar 

  9. S. Prezioso, F. Perrozzi, L. Giancaterini, C. Cantalini, E. Treossi, V. Palermo, M. Nardone, S. Santucci, L. Ottaviano, Graphene oxide as a practical solution to high sensitivity gas sensing. J. Phys. Chem. C 117(20), 10683–10690 (2013)

    Article  Google Scholar 

  10. J. Zhang, R.F. Zhang, X.N. Wang, W. Feng, P.A. Hu, W. O’Neill, Z.L. Wang, Fabrication of highly oriented reduced graphene oxide microbelts array for massive production of sensitive ammonia gas sensors. J. Micromech. Microeng. 23(9), 095031 (2013)

    Article  Google Scholar 

  11. K.R. Nemade, S.A. Waghuley, Chemiresistive gas sensing by few-layered graphene. J. Electron. Mater. 42(10), 2857–2866 (2013)

    Article  Google Scholar 

  12. F. Yavari, E. Castillo, H. Gullapalli, P.M. Ajayan, N. Koratkar, High sensitivity detection of NO2 and NH3 in air using chemical vapor deposition grown graphene. Appl. Phys. Lett. 100(20), 203120 (2012)

    Article  Google Scholar 

  13. G. Chen, T.M. Paronyan, A.R. Harutyunyan, Sub-ppt gas detection with pristine graphene. Appl. Phys. Lett. 101(5), 053119 (2012)

    Article  Google Scholar 

  14. M.G. Chung, D.H. Kim, H.M. Lee, T. Kim, J.H. Choi, D.K. Seo, J.B. Yoo, S.H. Hong, T.J. Kang, Y.H. Kim, Highly sensitive NO2 gas sensor based on ozone treated graphene. Sens. Actuators B 166, 172–176 (2012)

    Article  Google Scholar 

  15. Y. Hajati, T. Blom, S.H.M. Jafri, S. Haldar, S. Bhandary, M.Z. Shoushtari, O. Eriksson, B. Sanyal, K. Leifer, Improved gas sensing activity in structurally defected bilayer graphene. Nanotechnology 23(50), 505501 (2012)

    Article  Google Scholar 

  16. J. Wang, Y. Kwak, I.Y. Lee, S. Maeng, G.H. Kim, Highly responsive hydrogen gas sensing by partially reduced graphite oxide thin films at room temperature. Carbon 50(11), 4061–4067 (2012)

    Article  Google Scholar 

  17. R.K. Paul, S. Badhulika, N.M. Saucedo, A. Mulchandani, Graphene nanomesh as highly sensitive chemiresistor gas sensor. Anal. Chem. 84(19), 8171–8178 (2012)

    Article  Google Scholar 

  18. W.J. Yuan, A.R. Liu, L. Huang, C. Li, G.Q. Shi, High-performance NO2 sensors based on chemically modified graphene. Adv. Mater. 25(5), 766–771 (2013)

    Article  Google Scholar 

  19. H.J. Yoon, D.H. Jun, J.H. Yang, Z.X. Zhou, S.S. Yang, M.M.C. Cheng, Carbon dioxide gas sensor using a graphene sheet. Sens. Actuators B 157(1), 310–313 (2011)

    Article  Google Scholar 

  20. J.D. Fowler, M.J. Allen, V.C. Tung, Y. Yang, R.B. Kaner, B.H. Weiller, Practical chemical sensors from chemically derived graphene. ACS Nano 3(2), 301–306 (2009)

    Article  Google Scholar 

  21. P. Althainz, A. Dahlke, M. Frietschklarhof, J. Goschnick, H.J. Ache, Reception tuning of gas-sensor microsystems by selective coatings. Sens. Actuators B 25(1–3), 366–369 (1995)

    Article  Google Scholar 

  22. S. Some, Y. Xu, Y. Kim, Y. Yoon, H. Qin, A. Kulkarni, T. Kim, H. Lee, Highly sensitive and selective gas sensor using hydrophilic and hydrophobic graphenes. Sci. Rep. UK 3, 1868 (2013)

    Google Scholar 

  23. Y.H. Zhang, Y.B. Chen, K.G. Zhou, C.H. Liu, J. Zeng, H.L. Zhang, Y. Peng, Improving gas sensing properties of graphene by introducing dopants and defects: a first-principles study. Nanotechnology 20(18), 185504 (2009)

    Article  Google Scholar 

  24. M. Chi, Y.P. Zhao, Adsorption of formaldehyde molecule on the intrinsic and Al-doped graphene: a first principle study. Comp. Mater. Sci. 46(4), 1085–1090 (2009)

    Article  Google Scholar 

  25. G. Yang, C. Lee, J. Kim, F. Ren, S.J. Pearton, Flexible graphene-based chemical sensors on paper substrates. Phys. Chem. Chem. Phys. 15(6), 1798–1801 (2013)

    Article  Google Scholar 

  26. C. Lee, J. Ahn, K.B. Lee, D. Kim, J. Kim, Graphene-based flexible NO2 chemical sensors. Thin Solid Films 520(16), 5459–5462 (2012)

    Article  Google Scholar 

  27. V. Dua, S.P. Surwade, S. Ammu, S.R. Agnihotra, S. Jain, K.E. Roberts, S. Park, R.S. Ruoff, S.K. Manohar, All-organic vapor sensor using inkjet-printed reduced graphene oxide. Angew. Chem. Int. Edit. 49(12), 2154–2157 (2010)

    Article  Google Scholar 

  28. R. Kumar, D. Varandani, B.R. Mehta, V.N. Singh, Z. Wen, X. Feng, K. Mullen, Fast response and recovery of hydrogen sensing in Pd-Pt nanoparticle-graphene composite layers. Nanotechnology 22(27), 275719 (2011)

    Article  Google Scholar 

  29. M.G. Chung, D.-H. Kim, D.K. Seo, T. Kim, H.U. Im, H.M. Lee, J.-B. Yoo, S.-H. Hong, T.J. Kang, Y.H. Kim, Flexible hydrogen sensors using graphene with palladium nanoparticle decoration. Sens. Actuators B 169, 387–392 (2012)

    Article  Google Scholar 

  30. V. Tjoa, W. Jun, V. Dravid, S. Mhaisalkar, N. Mathews, Hybrid graphene–metal nanoparticle systems: electronic properties and gas interaction. J. Mater. Chem. 21(39), 15593 (2011)

    Article  Google Scholar 

  31. S. Liang, J. Zhu, C. Wang, S. Yu, H. Bi, X. Liu, X. Wang, Fabrication of α-Fe2O3@ graphene nanostructures for enhanced gas-sensing property to ethanol. Appl. Surf. Sci. 292, 278–284 (2014)

    Article  Google Scholar 

  32. S. Srivastava, K. Jain, V.N. Singh, S. Singh, N. Vijayan, N. Dilawar, G. Gupta, T.D. Senguttuvan, Faster response of NO2 sensing in graphene-WO3 nanocomposites. Nanotechnology 23(20), 205501 (2012)

    Article  Google Scholar 

  33. G. Neri, S.G. Leonardi, M. Latino, N. Donato, S. Baek, D.E. Conte, P.A. Russo, N. Pinna, Sensing behavior of SnO2/reduced graphene oxide nanocomposites toward NO2. Sens. Actuators B 179, 61–68 (2013)

    Article  Google Scholar 

  34. H. Zhang, J. Feng, T. Fei, S. Liu, T. Zhang, SnO2 nanoparticles-reduced graphene oxide nanocomposites for NO2 sensing at low operating temperature. Sens. Actuators B 190, 472–478 (2014)

    Article  Google Scholar 

  35. Q. Lin, Y. Li, M. Yang, Tin oxide/graphene composite fabricated via a hydrothermal method for gas sensors working at room temperature. Sens. Actuators B 173, 139–147 (2012)

    Article  Google Scholar 

  36. Y. Chang, Y. Yao, B. Wang, H. Luo, T. Li, L. Zhi, Reduced graphene oxide mediated SnO2 nanocrystals for enhanced gas-sensing properties. J. Mater. Sci. Technol. 29(2), 157–160 (2013)

    Article  Google Scholar 

  37. N. Chen, X. Li, X. Wang, J. Yu, J. Wang, Z. Tang, S.A. Akbar, Enhanced room temperature sensing of Co3O4-intercalated reduced graphene oxide based gas sensors. Sens. Actuators B 188, 902–908 (2013)

    Article  Google Scholar 

  38. Q. Huang, D. Zeng, H. Li, C. Xie, Room temperature formaldehyde sensors with enhanced performance, fast response and recovery based on zinc oxide quantum dots/graphene nanocomposites. Nanoscale 4(18), 5651–5658 (2012)

    Article  Google Scholar 

  39. S. Mao, S. Cui, G. Lu, K. Yu, Z. Wen, J. Chen, Tuning gas-sensing properties of reduced graphene oxide using tin oxide nanocrystals. J. Mater. Chem. 22(22), 11009 (2012)

    Article  Google Scholar 

  40. S.M. Cui, Z.H. Wen, E.C. Mattson, S. Mao, J.B. Chang, M. Weinert, C.J. Hirschmugl, M. Gajdardziska-Josifovska, J.H. Chen, Indium-doped SnO2 nanoparticle-graphene nanohybrids: simple one-pot synthesis and their selective detection of NO2. J. Mater. Chem. A 1(14), 4462–4467 (2013)

    Article  Google Scholar 

  41. A. Esfandiar, S. Ghasemi, A. Irajizad, O. Akhavan, M.R. Gholami, The decoration of TiO2/reduced graphene oxide by Pd and Pt nanoparticles for hydrogen gas sensing. Int. J. Hydrog. Energy 37(20), 15423–15432 (2012)

    Article  Google Scholar 

  42. Y. Zhang, C. Liu, Y. Min, X. Qi, X. Ben, The simple preparation of graphene/Pt nanoparticles composites and their electrochemical performance. J. Mater. Sci. Mater. Electron 24(9), 3244–3248 (2013)

    Article  Google Scholar 

  43. M. Zhou, Y.H. Lu, Y.Q. Cai, C. Zhang, Y.P. Feng, Adsorption of gas molecules on transition metal embedded graphene: a search for high-performance graphene-based catalysts and gas sensors. Nanotechnology 22(38), 385502 (2011)

    Article  Google Scholar 

  44. U. Lange, T. Hirsch, V.M. Mirsky, O.S. Wolfbeis, Hydrogen sensor based on a graphene – palladium nanocomposite. Electrochim. Acta 56(10), 3707–3712 (2011)

    Article  Google Scholar 

  45. H. Yu, P. Xu, D.W. Lee, X. Li, Porous-layered stack of functionalized AuNP–rGO (gold nanoparticles–reduced graphene oxide) nanosheets as a sensing material for the micro-gravimetric detection of chemical vapor. J. Mater. Chem. A 1(14), 4444 (2013)

    Article  Google Scholar 

  46. P.T. Yin, T.H. Kim, J.W. Choi, K.B. Lee, Prospects for graphene-nanoparticle-based hybrid sensors. Phys. Chem. Chem. Phys. 15(31), 12785–12799 (2013)

    Article  Google Scholar 

  47. Q. Zhuo, Y. Ma, J. Gao, P. Zhang, Y. Xia, Y. Tian, X. Sun, J. Zhong, X. Sun, Facile synthesis of graphene/metal nanoparticle composites via self-catalysis reduction at room temperature. Inorg. Chem. 52(6), 3141–3147 (2013)

    Article  Google Scholar 

  48. S. Yang, J. Dong, Z. Yao, C. Shen, X. Shi, Y. Tian, S. Lin, X. Zhang, One-pot synthesis of graphene-supported monodisperse Pd nanoparticles as catalyst for formic acid electro-oxidation. Sci. Rep. 4, 4501 (2014)

    Google Scholar 

  49. M. Shafiei, P.G. Spizzirri, R. Arsat, J. Yu, J. du Plessis, S. Dubin, R.B. Kaner, K. Kalantar-Zadeh, W. Wlodarski, Platinum/graphene nanosheet/SiC contacts and their application for hydrogen gas sensing. J. Phys. Chem. C 114(32), 13796–13801 (2010)

    Article  Google Scholar 

  50. A.M. Zaniewski, M. Schriver, J. Gloria Lee, M.F. Crommie, A. Zettl, Electronic and optical properties of metal-nanoparticle filled graphene sandwiches. Appl. Phys. Lett. 102(2), 023108 (2013)

    Article  Google Scholar 

  51. F.L. Meng, H.H. Li, L.T. Kong, J.Y. Liu, Z. Jin, W. Li, Y. Jia, J.H. Liu, X.J. Huang, Parts per billion-level detection of benzene using SnO2/graphene nanocomposite composed of sub-6 nm SnO2 nanoparticles. Anal. Chim. Acta 736, 100–107 (2012)

    Article  Google Scholar 

  52. A. Cao, Z. Liu, S. Chu, M. Wu, Z. Ye, Z. Cai, Y. Chang, S. Wang, Q. Gong, Y. Liu, A facile one-step method to produce graphene-CdS quantum dot nanocomposites as promising optoelectronic materials. Adv. Mater. 22(1), 103–106 (2010)

    Article  Google Scholar 

  53. G. Williams, B. Seger, P.V. Kamat, TiO2-graphene nanocomposites. UV-assisted photocatalytic reduction of graphene oxide. ACS Nano 2(7), 1487–1491 (2008)

    Article  Google Scholar 

  54. H. William, O. Richard, Preparation of graphitic oxide. J. Am. Chem. Soc. 80, 1339 (1958)

    Article  Google Scholar 

  55. S. Liu, J. Tian, L. Wang, X. Sun, A method for the production of reduced graphene oxide using benzylamine as a reducing and stabilizing agent and its subsequent decoration with Ag nanoparticles for enzymeless hydrogen peroxide detection. Carbon 49(10), 3158–3164 (2011)

    Article  Google Scholar 

  56. J. Zhang, X. Liu, L. Wang, T. Yang, X. Guo, S. Wu, S. Wang, S. Zhang, Synthesis and gas sensing properties of alpha-Fe2O3@ZnO core-shell nanospindles. Nanotechnology 22(18), 185501 (2011)

    Article  Google Scholar 

  57. Y.Y. Liang, Y.G. Li, H.L. Wang, J.G. Zhou, J. Wang, T. Regier, H.J. Dai, Co3O4 nanocrystals on graphene as a synergistic catalyst for oxygen reduction reaction. Nat. Mater. 10(10), 780–786 (2011)

    Article  Google Scholar 

  58. A.K. Agegnehu, C.-J. Pan, J. Rick, J.-F. Lee, W.-N. Su, B.-J. Hwang, Enhanced hydrogen generation by cocatalytic Ni and NiO nanoparticles loaded on graphene oxide sheets. J. Mater. Chem. 22(27), 13849 (2012)

    Article  Google Scholar 

  59. R.B. Rakhi, W. Chen, D. Cha, H.N. Alshareef, High performance supercapacitors using metal oxide anchored graphene nanosheet electrodes. J. Mater. Chem. 21(40), 16197 (2011)

    Article  Google Scholar 

  60. G. Singh, A. Choudhary, D. Haranath, A.G. Joshi, N. Singh, S. Singh, R. Pasricha, ZnO decorated luminescent graphene as a potential gas sensor at room temperature. Carbon 50(2), 385–394 (2012)

    Article  Google Scholar 

  61. C. Wang, L. Yin, L. Zhang, D. Xiang, R. Gao, Metal oxide gas sensors: sensitivity and influencing factors. Sensors 10(3), 2088–2106 (2010)

    Article  Google Scholar 

  62. S. Matsushima, Y. Teraoka, N. Miura, N. Yamazoe, Electronic interaction between metal additives and tin dioxide in tin dioxide-based gas sensors. Jpn. J. Appl. Phys. 27(10), 1798–1802 (1988)

    Article  Google Scholar 

  63. N. Yamazoe, New approaches for improving semiconductor gas sensors. Sens. Actuators B 5(1–4), 7–19 (1991)

    Article  Google Scholar 

  64. J.-K. Choi, I.-S. Hwang, S.-J. Kim, J.-S. Park, S.-S. Park, U. Jeong, Y.C. Kang, J.-H. Lee, Design of selective gas sensors using electrospun Pd-doped SnO2 hollow nanofibers. Sens. Actuators B 150(1), 191–199 (2010)

    Article  Google Scholar 

  65. F. Pourfayaz, A. Khodadadi, Y. Mortazavi, S.S. Mohajerzadeh, CeO2 doped SnO2 sensor selective to ethanol in presence of CO, LPG and CH4. Sens. Actuators B 108(1–2), 172–176 (2005)

    Article  Google Scholar 

  66. J. Kaur, R. Kumar, M.C. Bhatnagar, Effect of indium-doped SnO2 nanoparticles on NO2 gas sensing properties. Sens. Actuators B 126(2), 478–484 (2007)

    Article  Google Scholar 

  67. N.S. Ramgir, I.S. Mulla, K.P. Vijayamohanan, A room temperature nitric oxide sensor actualized from Ru-doped SnO2 nanowires. Sens. Actuators B 107(2), 708–715 (2005)

    Article  Google Scholar 

  68. X. Yu, G. Zhang, H. Cao, X. An, Y. Wang, Z. Shu, X. An, F. Hua, ZnO@ZnS hollow dumbbells–graphene composites as high-performance photocatalysts and alcohol sensors. New J. Chem. 36(12), 2593 (2012)

    Article  Google Scholar 

  69. S.J. Choi, B.H. Jang, S.J. Lee, B.K. Min, A. Rothschild, I.D. Kim, Selective detection of acetone and hydrogen sulfide for the diagnosis of diabetes and halitosis using SnO2 nanofibers functionalized with reduced graphene oxide nanosheets. ACS Appl. Mater. Interfaces 6(4), 2588–2597 (2014)

    Article  Google Scholar 

  70. R.J. Zou, G.J. He, K.B. Xu, Q. Liu, Z.Y. Zhang, J.Q. Hu, ZnO nanorods on reduced graphene sheets with excellent field emission, gas sensor and photocatalytic properties. J. Mater. Chem. A 1(29), 8445–8452 (2013)

    Article  Google Scholar 

  71. X.Q. An, J.C. Yu, Y. Wang, Y.M. Hu, X.L. Yu, G.J. Zhang, WO3 nanorods/graphene nanocomposites for high-efficiency visible-light-driven photocatalysis and NO2 gas sensing. J. Mater. Chem. 22(17), 8525–8531 (2012)

    Article  Google Scholar 

  72. S. Deng, V. Tjoa, H.M. Fan, H.R. Tan, D.C. Sayle, M. Olivo, S. Mhaisalkar, J. Wei, C.H. Sow, Reduced graphene oxide conjugated Cu2O nanowire mesocrystals for high-performance NO2 gas sensor. J. Am. Chem. Soc. 134(10), 4905–4917 (2012)

    Article  Google Scholar 

  73. Z.Y. Zhang, R.J. Zou, G.S. Song, L. Yu, Z.G. Chen, J.Q. Hu, Highly aligned SnO2 nanorods on graphene sheets for gas sensors. J. Mater. Chem. 21(43), 17360–17365 (2011)

    Article  Google Scholar 

  74. J. Yi, J.M. Lee, W. Il Park, Vertically aligned ZnO nanorods and graphene hybrid architectures for high-sensitive flexible gas sensors. Sens. Actuators B 155(1), 264–269 (2011)

    Article  Google Scholar 

  75. H.N. Tien, S.H. Hur, One-step synthesis of a highly conductive graphene-polypyrrole nanofiber composite using a redox reaction and its use in gas sensors. Phys. Status Solidi R 6(9–10), 379–381 (2012)

    Article  Google Scholar 

  76. L. Al-Mashat, K. Shin, K. Kalantar-Zadeh, J.D. Plessis, S.H. Han, R.W. Kojima, R.B. Kaner, D. Li, X.L. Gou, S.J. Ippolito, W. Wlodarski, Graphene/polyaniline nanocomposite for hydrogen sensing. J. Phys. Chem. C 114(39), 16168–16173 (2010)

    Article  Google Scholar 

  77. H.Y. Jeong, D.S. Lee, H.K. Choi, D.H. Lee, J.E. Kim, J.Y. Lee, W.J. Lee, S.O. Kim, S.Y. Choi, Flexible room-temperature NO2 gas sensors based on carbon nanotubes/reduced graphene hybrid films. Appl. Phys. Lett. 96(21), 213105 (2010)

    Article  Google Scholar 

  78. I.D. Kim, A. Rothschild, H.L. Tuller, Advances and new directions in gas-sensing devices. Acta Mater. 61(3), 974–1000 (2013)

    Article  Google Scholar 

  79. K.S. Kim, Y. Zhao, H. Jang, S.Y. Lee, J.M. Kim, K.S. Kim, J.H. Ahn, P. Kim, J.Y. Choi, B.H. Hong, Large-scale pattern growth of graphene films for stretchable transparent electrodes. Nature 457(7230), 706–710 (2009)

    Article  Google Scholar 

  80. T.V. Cuong, V.H. Pham, J.S. Chung, E.W. Shin, D.H. Yoo, S.H. Hahn, J.S. Huh, G.H. Rue, E.J. Kim, S.H. Hur, P.A. Kohl, Solution-processed ZnO-chemically converted graphene gas sensor. Mater. Lett. 64(22), 2479–2482 (2010)

    Article  Google Scholar 

  81. I.D. Kim, A. Rothschild, B.H. Lee, D.Y. Kim, S.M. Jo, H.L. Tuller, Ultrasensitive chemiresistors based on electrospun TiO2 nanofibers. Nano Lett. 6(9), 2009–2013 (2006)

    Article  Google Scholar 

  82. N.H. Kim, S.J. Choi, D.J. Yang, J. Bae, J. Park, I.D. Kim, Highly sensitive and selective hydrogen sulfide and toluene sensors using Pd functionalized WO3 nanofibers for potential diagnosis of halitosis and lung cancer. Sens. Actuators B 193, 574–581 (2014)

    Article  Google Scholar 

  83. J. Shin, S.J. Choi, I. Lee, D.Y. Youn, C.O. Park, J.H. Lee, H.L. Tuller, I.D. Kim, Thin-wall assembled SnO2 fibers functionalized by catalytic Pt nanoparticles and their superior exhaled-breath-sensing properties for the diagnosis of diabetes. Adv. Funct. Mater. 23(19), 2357–2367 (2013)

    Article  Google Scholar 

  84. B.H. Jang, O. Landau, S.J. Choi, J. Shin, A. Rothschild, I.D. Kim, Selectivity enhancement of SnO2 nanofiber gas sensors by functionalization with Pt nanocatalysts and manipulation of the operation temperature. Sens. Actuators B 188, 156–168 (2013)

    Article  Google Scholar 

  85. D.J. Yang, I. Kamienchick, D.Y. Youn, A. Rothschild, I.D. Kim, Ultrasensitive and highly selective gas sensors based on electrospun SnO2 nanofibers modified by Pd loading. Adv. Funct. Mater. 20(24), 4258–4264 (2010)

    Article  Google Scholar 

  86. S.H. Choi, I.S. Hwang, J.H. Lee, S.G. Oh, I.D. Kim, Microstructural control and selective C2H5OH sensing properties of Zn2SnO4 nanofibers prepared by electrospinning. Chem. Commun. 47(33), 9315–9317 (2011)

    Article  Google Scholar 

  87. S.H. Choi, S.J. Choi, B.K. Min, W.Y. Lee, J.S. Park, I.D. Kim, Facile synthesis of p-type perovskite SrTi0.65Fe0.35O3 nanofibers prepared by electrospinning and their oxygen-sensing properties. Macromol. Mater. Eng. 298(5), 521–527 (2013)

    Article  Google Scholar 

  88. S.J. Choi, I. Lee, B.H. Jang, D.Y. Youn, W.H. Ryu, C.O. Park, I.D. Kim, Selective diagnosis of diabetes using Pt-functionalized WO3 hemitube networks as a sensing layer of acetone in exhaled breath. Anal. Chem. 85(3), 1792–1796 (2013)

    Article  Google Scholar 

  89. N.G. Cho, H.S. Woo, J.H. Lee, I.D. Kim, Thin-walled NiO tubes functionalized with catalytic Pt for highly selective C2H5OH sensors using electrospun fibers as a sacrificial template. Chem. Commun. 47(40), 11300–11302 (2011)

    Article  Google Scholar 

  90. S.H. Choi, G. Ankonina, D.Y. Youn, S.G. Oh, J.M. Hong, A. Rothschild, I.D. Kim, Hollow ZnO nanofibers fabricated using electrospun polymer templates and their electronic transport properties. ACS Nano 3(9), 2623–2631 (2009)

    Article  Google Scholar 

  91. I.V. Lightcap, T.H. Kosel, P.V. Kamat, Anchoring semiconductor and metal nanoparticles on a two-dimensional catalyst mat. Storing and shuttling electrons with reduced graphene oxide. Nano Lett. 10(2), 577–583 (2010)

    Article  Google Scholar 

  92. A. Rothschild, H.L. Tuller, Gas sensors: new materials and processing approaches. J. Electroceram 17(2–4), 1005–1012 (2006)

    Article  Google Scholar 

  93. A. Rothschild, Y. Komem, On the relationship between the grain size and gas-sensitivity of chemo-resistive metal-oxide gas sensors with nanosized grains. J. Electroceram 13(1–3), 697–701 (2004)

    Article  Google Scholar 

  94. C.E. Kehayias, S. MacNaughton, S. Sonkusale, C. Staii, Kelvin probe microscopy and electronic transport measurements in reduced graphene oxide chemical sensors. Nanotechnology 24(24), 245502 (2013)

    Article  Google Scholar 

  95. W.H. Ryu, T.H. Yoon, S.H. Song, S. Jeon, Y.J. Park, I.D. Kim, Bifunctional composite catalysts using Co3O4 nanofibers immobilized on nonoxidized graphene nanoflakes for high-capacity and long-cycle Li-O-2 batteries. Nano Lett. 13(9), 4190–4197 (2013)

    Article  Google Scholar 

  96. Y.Q. Zhang, Y.Z. Wang, J.B. Jia, J.G. Wang, Nonenzymatic glucose sensor based on graphene oxide and electrospun NiO nanofibers. Sens. Actuators B 171, 580–587 (2012)

    Article  Google Scholar 

  97. S.M. Jiang, B.T. Zhao, R. Ran, R. Cai, M.O. Tade, Z.P. Shao, A freestanding composite film electrode stacked from hierarchical electrospun SnO2 nanorods and graphene sheets for reversible lithium storage. RSC Adv. 4(18), 9367–9371 (2014)

    Article  Google Scholar 

  98. P.N. Zhu, A.S. Nair, S.J. Peng, S.Y. Yang, S. Ramakrishna, Facile fabrication of TiO2-graphene composite with enhanced photovoltaic and photocatalytic properties by electrospinning. ACS Appl. Mater. Interfaces 4(2), 581–585 (2012)

    Article  Google Scholar 

  99. X. Zhang, P.S. Kumar, V. Aravindan, H.H. Liu, J. Sundaramurthy, S.G. Mhaisalkar, H.M. Duong, S. Ramakrishna, S. Madhavi, Electrospun TiO2-graphene composite nanofibers as a highly durable insertion anode for lithium ion batteries. J. Phys. Chem. C 116(28), 14780–14788 (2012)

    Article  Google Scholar 

  100. J. Yan, T. Wei, B. Shao, Z.J. Fan, W.Z. Qian, M.L. Zhang, F. Wei, Preparation of a graphene nanosheet/polyaniline composite with high specific capacitance. Carbon 48(2), 487–493 (2010)

    Article  Google Scholar 

  101. J.D. Fowler, S. Virji, R.B. Kaner, B.H. Weiller, Hydrogen detection by polyaniline nanofibers on gold and platinum electrodes. J. Phys. Chem. C 113(16), 6444–6449 (2009)

    Article  Google Scholar 

  102. A.Z. Sadek, C.O. Baker, D.A. Powell, W. Wlodarski, R.B. Kaner, K. Kalantar-zadeh, Polyaniline nanofiber based surface acoustic wave gas sensors-effect of nanofiber diameter on H2 response. IEEE Sens. J. 7(1–2), 213–218 (2007)

    Article  Google Scholar 

  103. H.R. Pant, C.H. Park, L.D. Tijing, A. Amarjargal, D.H. Lee, C.S. Kim, Bimodal fiber diameter distributed graphene oxide/nylon-6 composite nanofibrous mats via electrospinning. Colloid Surf. A 407, 121–125 (2012)

    Article  Google Scholar 

  104. Y.Q. Tan, Y.H. Song, Q. Zheng, Hydrogen bonding-driven rheological modulation of chemically reduced graphene oxide/poly(vinyl alcohol) suspensions and its application in electrospinning. Nanoscale 4(22), 6997–7005 (2012)

    Article  Google Scholar 

  105. Y.L. Huang, A. Baji, H.W. Tien, Y.K. Yang, S.Y. Yang, C.C.M. Ma, H.Y. Liu, Y.W. Mai, N.H. Wang, Self-assembly of graphene onto electrospun polyamide 66 nanofibers as transparent conductive thin films. Nanotechnology 22(47), 475603 (2011)

    Article  Google Scholar 

  106. Q. Dong, G. Wang, H. Hu, J. Yang, B.Q. Qian, Z. Ling, J.S. Qiu, Ultrasound-assisted preparation of electrospun carbon nanofiber/graphene composite electrode for supercapacitors. J. Power Sources 243, 350–353 (2013)

    Article  Google Scholar 

  107. Y.Y. Qi, Z.X. Tai, D.F. Sun, J.T. Chen, H.B. Ma, X.B. Yan, B. Liu, Q.J. Xue, Fabrication and characterization of poly(vinyl alcohol)/graphene oxide nanofibrous biocomposite scaffolds. J. Appl. Polym. Sci. 127(3), 1885–1894 (2013)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Il-Doo Kim .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Kim, ID., Choi, SJ., Cho, HJ. (2015). Graphene-Based Composite Materials for Chemical Sensor Application. In: Macagnano, A., Zampetti, E., Kny, E. (eds) Electrospinning for High Performance Sensors. NanoScience and Technology. Springer, Cham. https://doi.org/10.1007/978-3-319-14406-1_3

Download citation

Publish with us

Policies and ethics