Skip to main content
Log in

The Relationship between CO2 Adsorption and Microporous Volume in a Porous Carbon Material

  • INNOVATIVE TECHNOLOGIES OF OIL AND GAS
  • Published:
Chemistry and Technology of Fuels and Oils Aims and scope

In this work, we have characterized four types of porous carbon material by N2 adsorption at 77 K and CO2 adsorption at the freezing point. The results show that both the BET equation based on the N2 adsorption isotherm and the D-A model parameters obtained from the CO2 adsorption isotherm are not applicable for analyzing the CO2 adsorption characteristics in porous carbon materials. The density functional theory (DFT) analysis results of the CO2 adsorption isotherm show that the adsorption of CO2 in a porous carbon material occurs mainly in micropores, and the micropore volume calculated by the DFT model is in good agreement with the adsorption isotherm. Therefore, the DFT model based on the CO2 adsorption isotherm is a reliable characterization method and can accurately reflect the CO2 adsorption characteristics of activated carbon.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

References

  1. T. M. McDonald, J. A. Mason, X. Kong, E. D. Bloch, D. Gygi, A. Dani, V. Crocella, F. Giordanino, S. O. Odoh, W. S. Drisdell, B. Vlaisavljevich, A. L. Dzubak, R. Poloni, S. K. Schnell, N. Planas, K. Lee, T. Pascal, L. F. Wan, D. Prendergast, J. B. Neaton, B. Smit, J. B. Kortright, L. Gagliardi, S. Bordiga, J. A. Reimer, and J. R. Long, “Cooperative insertion of CO2 in diamine-appended metal-organic frameworks,” Nature, 519, 303-308 (2015).

    Article  CAS  Google Scholar 

  2. J. W. F. To, J. He, J. Mei, R. Haghpanah, Z. Chen, T. Kurosawa, S. Chen, W. G. Bae, L. Pan, J. B. H. Tok, J. Wilcox, and Z. Bao, “Hierarchical N-doped carbon as CO2 adsorbent with high CO2 selectivity from rationally designed polypyrrole precursor,” J. Am. Chem. Soc., 138(3), 10011009 (2016).

  3. Y. S. Bae and R. Q. Snurr, “Development and evaluation of porous materials for carbon dioxide separation and capture,” Angew. Chem. Int. ED., 50(49), 11586-11596 (2011).

    Article  CAS  Google Scholar 

  4. F. Liu, K. Huang, Q. Wu, and S. Dai, “Solvent-free self-assembly to the synthesis of nitrogen-doped ordered mesoporous polymers for highly selective captured and conversion of CO2,” Adv. Mater., 29(27), 17001445 (2017).

  5. S. C. Qi, Y. Liu, A. Z. Peng, D. M. Xue, X. Kui, X. Q. Lui, and L. B. Sun, “Fabrication of porous carbons from mesitylene for highly efficient CO2 capture: A rational choice improving the carbon loop.” Chem. Eng. J., 361, 945-952 (2019).

    Article  CAS  Google Scholar 

  6. L. Yue, L. Rao, L. Wang, L. An, C. Hou, C. Ma, H. DaCosta, and X. Hu, “Efficient CO2 adsorption on nitrogen-doped porous carbons from D-glucose,” Energy Fuels, 32 (6), 6955-6963 (2018).

    Article  CAS  Google Scholar 

  7. E. S. Kikkinides, R. T. Yang, and S. H. Cho, “Concentration and recovery of CO2 from flue gas by pressure swing adsorption,” Ind. Eng. Chem. Res., 32, 2714-2720 (1993).

    Article  CAS  Google Scholar 

  8. S. Sircar, T. C. Golden, and M. B. Rao, “Activated carbon for gas separation and storage,” Carbon, 34(7): 1-2 (1996).

    Article  CAS  Google Scholar 

  9. J. Zhang, Y. C. Zhang, W. Bai, et al., “Novel adsorbents for CO2-PSA and properties research,” Low Temp. Special Gases, 20(2), 26-29 (2002).

    Google Scholar 

  10. M. Kruk, M. Jaroniec, R. K. Gilpin, et al., “Nitrogen adsorption studies of coated and chemically modified chromatographic silica gels,” Langmuir, 13(3), 545-550 (1997).

    Article  CAS  Google Scholar 

  11. S. Brunauer, P. H. Emmett, and E. Teller, “Adsorption of gases in multimolecular layers,” J. Am. Chem. Soc., 60(2), 309-319 (1938).

    Article  CAS  Google Scholar 

  12. M. M. Dubinin, “The potential theory of adsorption of gases and vapors for adsorbents with energetically nonuniform surface,” Chem. Rev., 60(2), 235-241 (1960).

    Article  CAS  Google Scholar 

  13. G. Hovath and K. Kawazoe, “Method for calculation of effective pore size distribution in molecular sieve carbon,” J. Chem. Eng. Jpn., 16(6), 470-475 (1983).

    Article  Google Scholar 

  14. A. Saito and H. C. Foley, “Curvature and parametric sensitivity in models for adsorption in micropores,” AIChE J., 37(3), 429-436 (1991).

    Article  CAS  Google Scholar 

  15. J. Liu, S. Z. Qiao, H. Liu, et al., “Extension of the Stober method to the preparation of monodisperse resorcinol-formaldehyde resin polymer and carbon spheres,” Angew. Chem. Int. Ed., 88, 3336-3341, https://doi.org/10.1002/anie.201102011 (2011).

  16. S. Stock, H. Bretinger, and W. F. Maier, “Characterization of micro- and mesoporous solids by physisorption methods and pore-size analysis,” Appl. Catal., 174(2), 137-146 (1997).

    Google Scholar 

  17. M. M. Dubinin and V. A. Astakhov, “Development of the concepts of volume filling of micropores in the adsorption of gases and vapors by microporous adsorbent,” Russ. Chem. Bull., 20(1), 3-7 (1971).

    Article  Google Scholar 

  18. P. I. Ravikovitch and A. V. Neimark, “Characterization of nanoporous materials from adsorption and desorption isotherms,” Colloid. Surf. A: Physicochem. Eng. Asp., 187-188(31), 11-21 (2001).

    Article  CAS  Google Scholar 

  19. A. V. Neimark and P. I. Ravikovitch, “Capillary condensation in MMS and pore structure characterization,” Micropor. Mesopor. Mater., 44-45, 697-707 (2001).

    Article  CAS  Google Scholar 

  20. M. Kruk, M. Jaroniec, and A. Sayari, “Application of large pore MCM-41 molecular sieves to improve pore size analysis using nitrogen adsorption measurements,” Langmuir, 13(26), 6267-6273 (1997).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhengfei Ma.

Additional information

Translated from Khimiya i Tekhnologiya Topliv i Masel, No. 6, pp. 57 – 61, November – December, 2020.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wei, Y., Wang, J., Gu, C. et al. The Relationship between CO2 Adsorption and Microporous Volume in a Porous Carbon Material. Chem Technol Fuels Oils 56, 932–940 (2021). https://doi.org/10.1007/s10553-021-01210-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10553-021-01210-5

Keywords

Navigation