Skip to main content
Log in

Modified Models for Prediction of Flash Point of Multicomponent Mixtures in Air Compressor Systems for Low-Temperature Oxidation Processes of Air Injection in Heavy Oil Reservoirs

  • Published:
Chemistry and Technology of Fuels and Oils Aims and scope

A number of experimental measurements of the flash point of multicomponent mixtures were performed. A number of various theoretical models with experimental data has shown that traditional calculation models do not take into account the effect of high vapor pressure on the flash point temperature. The authors, using the UNIFAC method, proposed a modified model for calculating the flash point of multicomponent mixtures at high pressure. Comparative analysis of the models showed that the modified model allows obtaining design data that are in good agreement with the experimentally measured parameters of the well for a wide range of compositions of the mixture. The purpose of this work is to propose a model for calculating the flash point of a multicomponent mixture in a compressor system with increasing pressure, which does not require verification by experimental measurements. The model also makes it possible to evaluate the parameters of safe operation of compressor systems during air injection LTO of heavy oil reservoirs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

Similar content being viewed by others

References

  1. Y. Wang, L. Zhang, J. Deng, et al., J. Petrol. Sci. Eng., 151, 254-263 (2017).

    Article  CAS  Google Scholar 

  2. Z. Khansari, P. Kapadia, N. Mahinpey, et al., Energy, 64, No. 1, 419-428 (2014).

    Article  CAS  Google Scholar 

  3. D. Kong, D. J. A. Ende, S. J. Brenek, et al., J. Hazard. Mater., 102, No. 2-3,155 (2003).

    Article  CAS  PubMed  Google Scholar 

  4. J. Deng, F. Cheng, and Y. Song, J. Loss. Prey. Process. Ind., 36, 45-53 (2015).

    Article  CAS  Google Scholar 

  5. H. Le Chatelier, Annales des Mines, 19, No. 8, 388-395 (1891).

    Google Scholar 

  6. X. Liu and Z. Liu, J. Chem. Eng. Data., 55, No. 9, 2943-2950 (2010).

    Article  CAS  Google Scholar 

  7. R. 0. Wickey and D. H. Chittenden, J. Hydrocarb. Process., 42, No. 6,157-158 (1963).

    Google Scholar 

  8. M. Hristova and D. Damgaliev, Central European Journal of Chemistry, 11, No. 3, 388-393 (2013).

    CAS  Google Scholar 

  9. W. A. Affens, J. Chem. Eng. Data,11, No. 2,197-202 (1966).

    Article  CAS  Google Scholar 

  10. W. A. Affens and G W. McLaren, J. Chem. Eng. Data, 17, 482-488 (1972).

    Article  CAS  Google Scholar 

  11. U. Weidlich and J. Gmehling, Ind. Eng. Chem. Res., 26, No. 7,1372-1381 (1987).

    Article  CAS  Google Scholar 

  12. A. Fredenslund, J. Gmehling, and P. Rasmussen, Vapor-liquid Equilibria Using Unifac., 1, 134-149 (1977).

    Book  Google Scholar 

  13. J. Gmehling and P. Rasmussen, Ind. Eng. Chem. Fundam., 21,186-188 (1982).

    Article  CAS  Google Scholar 

  14. J. L. McGovern, J. Coat. TechnoL Res., 64, 33-38 (1992).

    CAS  Google Scholar 

  15. G Xu, D. Yang, P. Ning, et al., J. Chem. Thennodyn., 106, 295-302 (2017).

    Article  CAS  Google Scholar 

  16. D. White, C. L. Beyler, C. Fulper, et al., J. Fin?. Safety, 28, No. 1, 1-31 (1997).

    Article  CAS  Google Scholar 

  17. R. D. White, Drug Chem TbxicoL, 22, No. 1, 143-153(1999).

    Article  CAS  Google Scholar 

  18. L. Catoire and V. Naudet, J. Phys. Chem. Ref. Data, 33, No. 4, 1083-1111 (2004).

    Article  CAS  Google Scholar 

  19. L. Catoire, S. Paulmier, and V. Naudet, Process Saf Prog., 5, No. 1, 33-39 (2006).

    Article  CAS  Google Scholar 

  20. H. J. Liaw, Y. H. Lee, C. L Tang, et al., Loss. Prey Process. Ind., 15, 429-438 (2002).

    Article  Google Scholar 

  21. H. J. Liaw and Y. Y. Chiu, J. Hazard. Mater, 101, No. 2, 83-106 (2003).

    Article  CAS  PubMed  Google Scholar 

  22. H. J. Liaw, C. L. Tang, and I. S. Lai, Combust Flame, 138, No. 4, 308-319 (2004).

    Article  CAS  Google Scholar 

  23. H. J. Liaw and Y. Y. Chiu, J. Hazard. Mater, 137, No. 1, 38-46 (2006).

    Article  CAS  PubMed  Google Scholar 

  24. H. J. Liaw and T. A. Wang, J. Hazard. Mater., 141, No. 1, 193-201 (2007).

    Article  CAS  PubMed  Google Scholar 

  25. H. J. Liaw, W. H. Lu, V. Gerbaud, et al., J. Hazard. Mater, 153, No. 3,1165-1175 (2008).

    Article  CAS  PubMed  Google Scholar 

  26. H. J. Liaw, V. Gerbaud, and C. Y. Chiu, I Chem. Eng. Data, 55, No. 1,134-146 (2010).

    Article  CAS  Google Scholar 

  27. H. J. Liaw, V. Gerbaud, and Y. H. Li, Fluid Phase Equilibr, 300, No. 1-2, 70-82 (2011).

    Article  CAS  Google Scholar 

  28. H. J. Liaw and H. Y. Cheri, Ind. Eng. Chem. Res., 52, No. 22, 7579-7585 (2013).

    Article  CAS  Google Scholar 

  29. IL G Montemayor, M. A. Collier, and G G Lazarczyk, J. Test. EvaL, 30, No. 1, 74-84 (2002).

    Article  CAS  Google Scholar 

  30. N. Calvar, A. Dominguez, and E. A. Macedo, J. Chem. Thermodyn., 66,137-143 (2013).

    Article  CAS  Google Scholar 

  31. C. Antoine, Comptes Rendus, 107, 681-836 (1988).

    Google Scholar 

  32. T. P. Tsai and H. J. Liaw, A* Mater, 560-561,1178-1183 (2012).

  33. H. Zhang, H. Duan, J. Zuo, et al., J. Environ. Manage., 199, 21-30 (2017).

    Article  PubMed  Google Scholar 

Download references

Acknowledgement

This work was financially supported by China National Petroleum Corporation Ltd. (PRC).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuru He.

Additional information

Translated from Khimiya i Tekhnologiya Topliv i Masel, No. 2, pp. 46 — 52, March—April, 2019.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, K., He, Y. Modified Models for Prediction of Flash Point of Multicomponent Mixtures in Air Compressor Systems for Low-Temperature Oxidation Processes of Air Injection in Heavy Oil Reservoirs. Chem Technol Fuels Oils 55, 189–198 (2019). https://doi.org/10.1007/s10553-019-01020-w

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10553-019-01020-w

Keywords

Navigation