Skip to main content

Advertisement

Log in

CXCR4 pathway associated with family history of melanoma

  • Original Paper
  • Published:
Cancer Causes & Control Aims and scope Submit manuscript

Abstract

Purpose

Genetic predisposition plays a major role in the etiology of melanoma, but known genetic markers only account for a limited fraction of family-history-associated melanoma cases. Expression microarrays have offered the opportunity to identify further genomic profiles correlated with family history of melanoma. We aimed to distinguish mRNA expression signatures between melanoma cases with and without a family history of melanoma.

Methods

Based on the Nurses’ Health Study, family history was defined as having one or more first-degree family members diagnosed with melanoma. Melanoma diagnosis was confirmed by reviewing pathology reports, and tumor blocks were collected by mail from across the USA. Genomic interrogation was accomplished through evaluating expression profiling of formalin-fixed paraffin-embedded tissues from 78 primary cutaneous invasive melanoma cases, on either a 6K or whole-genome (24K) Illumina gene chip. Gene set enrichment analysis was performed for each batch to determine the differentially enriched pathways and key contributing genes.

Results

The CXC chemokine receptor 4 (CXCR4) pathway was consistently up-regulated within cases of familial melanoma in both platforms. Leading edge analysis showed four genes from the CXCR4 pathway, including MAPK1, PLCG1, CRK, and PTK2, were among the core members that contributed to the enrichment of this pathway. There was no association between the enrichment of CXCR4 pathway and NRAS, BRAF mutation, or Breslow thickness of the primary melanoma cases.

Conclusions

We found that the CXCR4 pathway might constitute a novel susceptibility pathway associated with family history of melanoma in first-degree relatives.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Siegel R, Naishadham D, Jemal A (2013) Cancer statistics, 2013. CA Cancer J Clin 63:11–30

    Article  PubMed  Google Scholar 

  2. Flaherty KT, Infante JR, Daud A, Gonzalez R, Kefford RF, Sosman J et al (2012) Combined BRAF and MEK inhibition in melanoma with BRAF V600 mutations. N Engl J Med 367:1694–1703

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  3. Hacker E, Hayward NK, Dumenil T, James MR, Whiteman DC (2012) The association between MC1R genotype and BRAF mutation status in cutaneous melanoma: findings from an Australian population. J Invest Dermatol 130:241–248

    Article  Google Scholar 

  4. Sosman JA, Kim KB, Schuchter L, Gonzalez R, Pavlick AC, Weber JS et al (2012) Survival in BRAF V600-mutant advanced melanoma treated with vemurafenib. N Engl J Med 366:707–714

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  5. Lin JY, Fisher DE (2007) Melanocyte biology and skin pigmentation. Nature 445:843–850

    Article  CAS  PubMed  Google Scholar 

  6. Qureshi AA, Zhang M, Han J (2011) Heterogeneity in host risk factors for incident melanoma and non-melanoma skin cancer in a cohort of US women. J Epidemiol 21:197–203

    Article  PubMed  Google Scholar 

  7. Goldstein AM, Tucker MA (2013) Dysplastic nevi and melanoma. Cancer Epidemiol Biomarkers Prev 22:528–532

    Article  PubMed  Google Scholar 

  8. Yang XR, Liang X, Pfeiffer RM, Wheeler W, Maeder D, Burdette L et al (2010) Associations of 9p21 variants with cutaneous malignant melanoma, nevi, and pigmentation phenotypes in melanoma-prone families with and without CDKN2A mutations. Fam Cancer 9:625–633

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  9. Goldstein AM (2004) Familial melanoma, pancreatic cancer and germline CDKN2A mutations. Hum Mutat 23:630

    Article  PubMed  Google Scholar 

  10. Duffy DL, Zhao ZZ, Sturm RA, Hayward NK, Martin NG, Montgomery GW (2010) Multiple pigmentation gene polymorphisms account for a substantial proportion of risk of cutaneous malignant melanoma. J Invest Dermatol 130:520–528

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  11. Landi MT, Bauer J, Pfeiffer RM, Elder DE, Hulley B, Minghetti P et al (2006) MC1R germline variants confer risk for BRAF-mutant melanoma. Science 313:521–522

    Article  CAS  PubMed  Google Scholar 

  12. Nan H, Kraft P, Hunter DJ, Han J (2009) Genetic variants in pigmentation genes, pigmentary phenotypes, and risk of skin cancer in Caucasians. Int J Cancer 125:909–917

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  13. Fan JB, Yeakley JM, Bibikova M, Chudin E, Wickham E, Chen J et al (2004) A versatile assay for high-throughput gene expression profiling on universal array matrices. Genome Res 14:878–885

    Article  CAS  PubMed  Google Scholar 

  14. Hoshida Y, Villanueva A, Kobayashi M, Peix J, Chiang DY, Camargo A et al (2008) Gene expression in fixed tissues and outcome in hepatocellular carcinoma. N Engl J Med 359:1995–2004

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  15. April C, Klotzle B, Royce T, Wickham-Garcia E, Boyaniwsky T, Izzo J et al (2009) Whole-genome gene expression profiling of formalin-fixed, paraffin-embedded tissue samples. PLoS One 4:e8162

    Article  PubMed Central  PubMed  Google Scholar 

  16. Spittle C, Ward MR, Nathanson KL, Gimotty PA, Rappaport E, Brose MS et al (2007) Application of a BRAF pyrosequencing assay for mutation detection and copy number analysis in malignant melanoma. J Mol Diagn 9:464–471

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  17. Sivertsson A, Platz A, Hansson J, Lundeberg J (2002) Pyrosequencing as an alternative to single-strand conformation polymorphism analysis for detection of N-ras mutations in human melanoma metastases. Clin Chem 48:2164–2170

    CAS  PubMed  Google Scholar 

  18. Irizarry RA, Hobbs B, Collin F, Beazer-Barclay YD, Antonellis KJ, Scherf U et al (2003) Exploration, normalization, and summaries of high density oligonucleotide array probe level data. Biostatistics 4:249–264

    Article  PubMed  Google Scholar 

  19. Smyth GK (2005) Limma: linear models for microarray data. In: Gentleman R, Carey V, Dudoit S, Irizarry R, Huber W (eds) Bioinformatics and computational biology solutions using R and Bioconductor. Springer, New York, pp 397–420

    Chapter  Google Scholar 

  20. Subramanian A, Tamayo P, Mootha VK, Mukherjee S, Ebert BL, Gillette MA et al (2005) Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci USA 102:15545–15550

    Article  CAS  PubMed  Google Scholar 

  21. Mootha VK, Lindgren CM, Eriksson KF, Subramanian A, Sihag S, Lehar J et al (2003) PGC-1alpha-responsive genes involved in oxidative phosphorylation are coordinately downregulated in human diabetes. Nat Genet 34:267–273

    Article  CAS  PubMed  Google Scholar 

  22. Teicher BA, Fricker SP (2010) CXCL12 (SDF-1)/CXCR4 pathway in cancer. Clin Cancer Res 16:2927–2931

    Article  CAS  PubMed  Google Scholar 

  23. Wu B, Chien EY, Mol CD, Fenalti G, Liu W, Katritch V et al (2010) Structures of the CXCR4 chemokine GPCR with small-molecule and cyclic peptide antagonists. Science 330:1066–1071

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  24. Wong D, Korz W (2008) Translating an antagonist of chemokine receptor CXCR4: from bench to bedside. Clin Cancer Res 14:7975–7980

    Article  CAS  PubMed  Google Scholar 

  25. Ramos EA, Grochoski M, Braun-Prado K, Seniski GG, Cavalli IJ, Ribeiro EM et al (2011) Epigenetic changes of CXCR4 and its ligand CXCL12 as prognostic factors for sporadic breast cancer. PLoS One 6:e29461

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  26. Righi E, Kashiwagi S, Yuan J, Santosuosso M, Leblanc P, Ingraham R et al (2011) CXCL12/CXCR4 blockade induces multimodal antitumor effects that prolong survival in an immunocompetent mouse model of ovarian cancer. Cancer Res 71:5522–5534

    Article  CAS  PubMed  Google Scholar 

  27. Scala S, Giuliano P, Ascierto PA, Ieranò C, Franco R, Napolitano M et al (2006) Human melanoma metastases express functional CXCR4. Clin Cancer Res 12:2427–2433

    Article  CAS  PubMed  Google Scholar 

  28. Balkwill F (2004) Cancer and the chemokine network. Nat Rev Cancer 4:540–550

    Article  CAS  PubMed  Google Scholar 

  29. Kim M, Koh YJ, Kim KE, Koh BI, Nam DH, Alitalo K et al (2010) CXCR4 signaling regulates metastasis of chemoresistant melanoma cells by a lymphatic metastatic niche. Cancer Res 70:10411–10421

    Article  CAS  PubMed  Google Scholar 

  30. Longo-Imedio MI, Longo N, Trevino I, Lazaro P, Sanchez-Mateos P (2005) Clinical significance of CXCR3 and CXCR4 expression in primary melanoma. Int J Cancer 117:861–865

    Article  CAS  PubMed  Google Scholar 

  31. Scala S, Ottaiano A, Ascierto PA, Cavalli M, Simeone E, Giuliano P et al (2005) Expression of CXCR4 predicts poor prognosis in patients with malignant melanoma. Clin Cancer Res 11:1835–1841

    Article  CAS  PubMed  Google Scholar 

  32. Sieg DJ, Hauck CR, Ilic D, Klingbeil CK, Schaefer E, Damsky CH et al (2000) FAK integrates growth-factor and integrin signals to promote cell migration. Nat Cell Biol 2:249–256

    Article  CAS  PubMed  Google Scholar 

  33. McLean GW, Carragher NO, Avizienyte E, Evans J, Brunton VG, Frame MC (2005) The role of focal-adhesion kinase in cancer—a new therapeutic opportunity. Nat Rev Cancer 5:505–515

    Article  CAS  PubMed  Google Scholar 

  34. Siesser PM, Hanks SK (2006) The signaling and biological implications of FAK overexpression in cancer. Clin Cancer Res 12:3233–3237

    Article  CAS  PubMed  Google Scholar 

  35. Anderson D, Koch CA, Grey L, Ellis C, Moran MF, Pawson T (1990) Binding of SH2 domains of phospholipase C gamma 1, GAP, and Src to activated growth factor receptors. Science 250:979–982

    Article  CAS  PubMed  Google Scholar 

  36. Delgado-Martin C, Escribano C, Pablos JL, Riol-Blanco L, Rodriguez-Fernandez JL (2011) Chemokine CXCL12 uses CXCR4 and a signaling core formed by bifunctional Akt, extracellular signal-regulated kinase (ERK)1/2, and mammalian target of rapamycin complex 1 (mTORC1) proteins to control chemotaxis and survival simultaneously in mature dendritic cells. J Biol Chem 286:37222–37236

    Article  CAS  PubMed  Google Scholar 

  37. Ellerhorst JA, Greene VR, Ekmekcioglu S, Warneke CL, Johnson MM, Cooke CP et al (2011) Clinical correlates of NRAS and BRAF mutations in primary human melanoma. Clin Cancer Res 17:229–235

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  38. Manolio TA, Collins FS, Cox NJ, Goldstein DB, Hindorff LA, Hunter DJ et al (2009) Finding the missing heritability of complex diseases. Nature 461:747–753

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  39. Pedroso I (2010) Gaining a pathway insight into genetic association data. Methods Mol Biol 628:373–382

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We are grateful to Drs. Alisa M. Goldstein and Nan Hu at Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, for their comments on our revisions. We thank the participants and staff of the Nurses’ Health Study, for their valuable contributions as well as the following state cancer registries for their help: A.L., A.Z., A.R., C.A., C.O., C.T., D.E., F.L., G.A., I.D., I.L., I.N., I.A., K.Y., L.A., M.E., M.D., M.A., M.I., N.E., N.H., N.J., N.Y., N.C., N.D., O.H., O.K., O.R., P.A., R.I., S.C., T.N., T.X., V.A., W.A., W.Y. This work was supported by Department of Dermatology, Brigham and Women’s Hospital, Boston, Massachusetts, a Nurses’ Health Study Grant (P01 CA87969). The funding sources did not involve in the data collection, data analysis, manuscript writing, and review.

Conflict of interest

AAQ serves as a consultant for Abbott, Centocor, Novaritis, and the Centers for Disease Control and Prevention. The other authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abrar A. Qureshi.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 69 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, WQ., Han, J., Widlund, H.R. et al. CXCR4 pathway associated with family history of melanoma. Cancer Causes Control 25, 125–132 (2014). https://doi.org/10.1007/s10552-013-0315-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10552-013-0315-9

Keywords

Navigation