Skip to main content

Advertisement

Log in

Complete elimination of estrogen receptor α by PROTAC estrogen receptor α degrader ERD-148 in breast cancer cells

  • Original Laboratory Investigation
  • Published:
Breast Cancer Research and Treatment Aims and scope Submit manuscript

Abstract

Purpose

Estrogen Receptor α (ERα) is a well-established therapeutic target for Estrogen Receptor (ER)-positive breast cancers. Both Selective Estrogen Receptor Degraders (SERD) and PROTAC ER degraders are synthetic compounds suppressing the ER activity through the degradation of ER. However, the differences between SERD and PROTAC ER degraders are far from clear.

Methods

The effect of PROTAC ER degrader ERD-148 and SERD fulvestrant on protein degradation was evaluated by western blot analysis. The cell proliferation was tested by WST-8 assays and the gene expressions were assessed by gene microarray and real-time RT-PCR analysis after the compound treatment.

Results

ERD-148 is a potent and selective PROTAC ERα degrader. It degrades not only unphosphorylated ERα but also the phosphorylated ERα in the cells. In contrast, the SERD fulvestrant showed much-reduced degradation potency on the phosphorylated ERα. The more complete degradation of ERα by ERD-148 translates into a greater maximum cell growth inhibition. However, ERD-148 and fulvestrant share a similar gene regulation profile except for the variation of regulation potency. Further studies indicate that ERD-148 degrades the ERα in fulvestrant-resistant cells.

Conclusion

PROTAC ER degrader has a different mechanism of action compared to SERD which may be used in treating fulvestrant-resistant cancers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data availability

Data are available upon request.

Abbreviations

ER:

Estrogen receptor

ERD:

Estrogen receptor degrader

FITC:

Fluorescein-5-isothiocyanate

GAPDH:

Glyceraldehyde-3-phosphate dehydrogenase

Imax:

Maximum inhibition

PCR:

Polymerase chain reaction

PI:

Propidium iodide

PROTAC:

Proteolysis-targeting chimeras

PVDF:

Polyvinylidene difluoride

RIPA buffer:

Radioimmunoprecipitation assay buffer

SERD:

Selective estrogen receptor degraders

SERM:

Selective estrogen receptor modulators

References

  1. Bjornstrom L, Sjoberg M (2005) Mechanisms of estrogen receptor signaling: convergence of genomic and nongenomic actions on target genes. Mol Endocrinol 19:833–842

    Article  PubMed  Google Scholar 

  2. Fuentes N, Silveyra P (2019) Estrogen receptor signaling mechanisms. Adv Protein Chem Struct Biol 116:135–170

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Lumachi F, Brunello A, Maruzzo M, Basso U, Basso SM (2013) Treatment of estrogen receptor-positive breast cancer. Curr Med Chem 20:596–604

    Article  CAS  PubMed  Google Scholar 

  4. Jia M, Dahlman-Wright K, Gustafsson JA (2015) Estrogen receptor alpha and beta in health and disease. Best Pract Res Clin Endocrinol Metab 29:557–568

    Article  CAS  PubMed  Google Scholar 

  5. Paterni I, Granchi C, Katzenellenbogen JA, Minutolo F (2014) Estrogen receptors alpha (ERalpha) and beta (ERbeta): subtype-selective ligands and clinical potential. Steroids 90:13–29

    Article  CAS  PubMed  Google Scholar 

  6. Kargbo RB (2020) Selective estrogen receptor degraders for the potential treatment of cancer. ACS Med Chem Lett 11:412–413

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Kato S, Endoh H, Masuhiro Y, Kitamoto T, Uchiyama S, Sasaki H, Masushige S, Gotoh Y, Nishida E, Kawashima H, Metzger D, Chambon P (1995) Activation of the estrogen receptor through phosphorylation by mitogen-activated protein kinase. Science 270:1491–1494

    Article  CAS  PubMed  Google Scholar 

  8. Lannigan DA (2003) Estrogen receptor phosphorylation. Steroids 68:1–9

    Article  CAS  PubMed  Google Scholar 

  9. Patel HK, Bihani T (2018) Selective estrogen receptor modulators (SERMs) and selective estrogen receptor degraders (SERDs) in cancer treatment. Pharmacol Ther 186:1–24

    Article  CAS  PubMed  Google Scholar 

  10. Wang L, Guillen VS, Sharma N, Flessa K, Min J, Carlson KE, Toy W, Braqi S, Katzenellenbogen BS, Katzenellenbogen JA, Chandarlapaty S, Sharma A (2018) New class of selective estrogen receptor degraders (SERDs): expanding the toolbox of PROTAC degrons. ACS Med Chem Lett 9:803–808

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Hernando C, Ortega-Morillo B, Tapia M, Moragon S, Martinez MT, Eroles P, Garrido-Cano I, Adam-Artigues A, Lluch A, Bermejo B, Cejalvo JM (2021) Oral selective estrogen receptor degraders (SERDs) as a novel breast cancer therapy: present and future from a clinical perspective. Int J Mol Sci 22(15):7812

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Pike AC, Brzozowski AM, Walton J, Hubbard RE, Thorsell AG, Li YL, Gustafsson JA, Carlquist M (2001) Structural insights into the mode of action of a pure antiestrogen. Structure 9:145–153

    Article  CAS  PubMed  Google Scholar 

  13. Weir HM, Bradbury RH, Lawson M, Rabow AA, Buttar D, Callis RJ, Curwen JO, de Almeida C, Ballard P, Hulse M, Donald CS, Feron LJ, Karoutchi G, MacFaul P, Moss T, Norman RA, Pearson SE, Tonge M, Davies G, Walker GE, Wilson Z, Rowlinson R, Powell S, Sadler C, Richmond G, Ladd B, Pazolli E, Mazzola AM, D’Cruz C, De Savi C (2016) AZD9496: an oral estrogen receptor inhibitor that blocks the growth of ER-positive and ESR1-mutant breast tumors in preclinical models. Cancer Res 76:3307–3318

    Article  CAS  PubMed  Google Scholar 

  14. Zhang X, Zhang Z, Xue X, Fan T, Tan C, Liu F, Tan Y, Jiang Y (2022) PROTAC degrader of estrogen receptor alpha targeting DNA-binding domain in breast cancer. ACS Pharmacol Transl Sci 5:1109–1118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Hu J, Hu B, Wang M, Xu F, Miao B, Yang CY, Wang M, Liu Z, Hayes DF, Chinnaswamy K, Delproposto J, Stuckey J, Wang S (2019) Discovery of ERD-308 as a highly potent proteolysis targeting chimera (PROTAC) degrader of estrogen receptor (ER). J Med Chem 62:1420–1442

    Article  CAS  PubMed  Google Scholar 

  16. Kargbo RB (2019) PROTAC-mediated degradation of estrogen receptor in the treatment of cancer. ACS Med Chem Lett 10:1367–1369

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Wang Z, Ma Z, Shen Z (2021) Selective degradation of the estrogen receptor in the treatment of cancers. J Steroid Biochem Mol Biol 209:105848

    Article  CAS  PubMed  Google Scholar 

  18. Qin H, Zhang Y, Lou Y, Pan Z, Song F, Liu Y, Xu T, Zheng X, Hu X, Huang P (2022) Overview of PROTACs targeting the estrogen receptor: achievements for biological and drug discovery. Curr Med Chem 29:3922–3944

    Article  CAS  PubMed  Google Scholar 

  19. Jimenez DG, Sebastiano MR, Caron G, Ermondi G (2021) Are we ready to design oral PROTACs(R)? ADMET DMPK 9:243–254

    PubMed  PubMed Central  Google Scholar 

  20. Lin X, Xiang H, Luo G (2020) Targeting estrogen receptor alpha for degradation with PROTACs: a promising approach to overcome endocrine resistance. Eur J Med Chem 206:112689

    Article  CAS  PubMed  Google Scholar 

  21. Liu Z, Hu M, Yang Y, Du C, Zhou H, Liu C, Chen Y, Fan L, Ma H, Gong Y, Xie Y (2022) An overview of PROTACs: a promising drug discovery paradigm. Mol Biomed 3:46

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Qi SM, Dong J, Xu ZY, Cheng XD, Zhang WD, Qin JJ (2021) PROTAC: an effective targeted protein degradation strategy for cancer therapy. Front Pharmacol 12:692574

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Wang C, Zhang Y, Wu Y, Xing D (2021) Developments of CRBN-based PROTACs as potential therapeutic agents. Eur J Med Chem 225:113749

    Article  CAS  PubMed  Google Scholar 

  24. Xi JY, Zhang RY, Chen K, Yao L, Li MQ, Jiang R, Li XY, Fan L (2022) Advances and perspectives of proteolysis targeting chimeras (PROTACs) in drug discovery. Bioorg Chem 125:105848

    Article  CAS  PubMed  Google Scholar 

  25. Gonzalez TL, Hancock M, Sun S, Gersch CL, Larios JM, David W, Hu J, Hayes DF, Wang S, Rae JM (2020) Targeted degradation of activating estrogen receptor alpha ligand-binding domain mutations in human breast cancer. Breast Cancer Res Treat 180:611–622

    Article  CAS  PubMed  Google Scholar 

  26. Tan H, Zhong Y, Pan Z (2009) Autocrine regulation of cell proliferation by estrogen receptor-alpha in estrogen receptor-alpha-positive breast cancer cell lines. BMC Cancer 9:31

    Article  PubMed  PubMed Central  Google Scholar 

  27. Hu B, Wu Z, Bai D, Liu T, Ullenbruch MR, Phan SH (2015) Mesenchymal deficiency of Notch1 attenuates bleomycin-induced pulmonary fibrosis. Am J Pathol 185:3066–3075

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Irizarry RA, Hobbs B, Collin F, Beazer-Barclay YD, Antonellis KJ, Scherf U, Speed TP (2003) Exploration, normalization, and summaries of high density oligonucleotide array probe level data. Biostatistics 4:249–264

    Article  PubMed  Google Scholar 

  29. Parrish RS, Spencer HJ 3rd (2004) Effect of normalization on significance testing for oligonucleotide microarrays. J Biopharm Stat 14:575–589

    Article  PubMed  Google Scholar 

  30. Joel PB, Traish AM, Lannigan DA (1998) Estradiol-induced phosphorylation of serine 118 in the estrogen receptor is independent of p42/p44 mitogen-activated protein kinase. J Biol Chem 273:13317–13323

    Article  CAS  PubMed  Google Scholar 

  31. Arnold SF, Vorojeikina DP, Notides AC (1995) Phosphorylation of tyrosine 537 on the human estrogen receptor is required for binding to an estrogen response element. J Biol Chem 270:30205–30212

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank the assistance of the Department of Internal Medicine at the University of Michigan for this study.

Funding

This study is supported by the University of Michigan Regional Comprehensive Metabolomics Resource Core Pilot and feasibility Grant (U24 DK097153).

Author information

Authors and Affiliations

Authors

Contributions

BH designed and conducted the experiments, analyzed and interpreted the data, and wrote the manuscript. JH conducted the experiments and wrote the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Biao Hu.

Ethics declarations

Competing interests

The authors declare that they have no competing interests.

Ethical approval

This study was performed in line with the principles of the Declaration of Helsinki. The use of animals and cell lines was conducted following the NIH guidelines in the USA.

Consent for publication

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, B., Hu, J. Complete elimination of estrogen receptor α by PROTAC estrogen receptor α degrader ERD-148 in breast cancer cells. Breast Cancer Res Treat 203, 383–396 (2024). https://doi.org/10.1007/s10549-023-07136-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10549-023-07136-2

Keywords

Navigation