Skip to main content

Advertisement

Log in

Targeted degradation of activating estrogen receptor α ligand-binding domain mutations in human breast cancer

  • Preclinical study
  • Published:
Breast Cancer Research and Treatment Aims and scope Submit manuscript

A Correction to this article was published on 16 March 2020

This article has been updated

Abstract

Purpose

Studies have identified several estrogen receptor α (ERα) ligand-binding domain (LBD) somatic mutations in endocrine therapy resistant, metastatic ER-positive breast cancers. The most common mutations, Tyr537Ser (Y537S) and Asp538Gly (D538G), are detected in ~ 30% of endocrine resistant metastatic breast cancer patients. These ESR1 mutations induce the agonist conformation of ERα, confer an estrogen-independent phenotype, and promote drug resistance to antiestrogens.

Methods

ER-positive, estrogen-dependent MCF-7 cells were engineered to express either the Y537S or D538G mutants using CRISPR knock-in (cY537S and cD538G). These cells were used to screen several estrogen receptor degrader (ERD) compounds synthesized using the Proteolysis Targeting Chimeras (PROTAC) method to induce degradation of ERα via the ubiquitin–proteasome pathway.

Results

Wild-type MCF-7 and ERα LBD mutant cells were treated with ERD-148 (10 pM–1 µM) and assayed for cellular proliferation using the PrestoBlue cell viability assay. ERD-148 attenuated ER-dependent growth with IC50 values of 0.8, 10.5, and 6.1 nM in MCF-7, cY537S, and cD538G cells, respectively. Western blot analysis showed that MCF-7 cells treated with 1 nM ERD-148 for 24 h exhibited reduced ERα protein expression as compared to the mutants. The ER-regulated gene, GREB1, demonstrated significant downregulation in parental and mutant cells after 24 h of ERD-148 treatment at 10 nM. Growth of the ER-negative, estrogen-independent MDA-MB-231 breast cancer cells was not inhibited by ERD-148 at the ~ IC90 observed in the ER-positive cells.

Conclusion

ERD-148 inhibits the growth of ER-positive breast cancer cells via downregulating ERα with comparable potency to Fulvestrant with marginal non-specific toxicity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Change history

  • 16 March 2020

    In the original publication of the article, the spelling of the sixth author’s given name was incorrect. The corrected author name should read as “Wadie David”. The original article has been corrected.

References

  1. Siegel RL, Miller KD Jemal A (2018) Cancer statistics, 2018. CA Cancer J Clin 68(1):7–30. https://doi.org/10.3322/caac.21442

    Article  Google Scholar 

  2. Dowsett M, Cuzick J, Ingle J, Coates A, Forbes J, Bliss J, Buyse M, Baum M, Buzdar A, Colleoni M, Coombes C, Snowdon C, Gnant M, Jakesz R, Kaufmann M, Boccardo F, Godwin J, Davies C, Peto R (2010) Meta-analysis of breast cancer outcomes in adjuvant trials of aromatase inhibitors versus tamoxifen. J Clin Oncol 28(3):509–518. https://doi.org/10.1200/JCO.2009.23.1274

    Article  CAS  PubMed  Google Scholar 

  3. Cuzick J, Sestak I, Baum M, Buzdar A, Howell A, Dowsett M, Forbes JF (2010) Effect of anastrozole and tamoxifen as adjuvant treatment for early-stage breast cancer: 10-year analysis of the ATAC trial. Lancet Oncol 11(12):1135–1141. https://doi.org/10.1016/s1470-2045(10)70257-6

    Article  CAS  PubMed  Google Scholar 

  4. Pan H, Gray R, Braybrooke J, Davies C, Taylor C, McGale P, Peto R, Pritchard KI, Bergh J, Dowsett M, Hayes DF (2017) 20-year risks of breast-cancer recurrence after stopping endocrine therapy at 5 years. N Engl J Med 377(19):1836–1846. https://doi.org/10.1056/NEJMoa1701830

    Article  PubMed  PubMed Central  Google Scholar 

  5. Jeng M, Shupnik MA, Bender TP, Westin EH, Bandyopadhyay D, Kumar R, Masamura S, Santen RJ (1998) Estrogen receptor expression and function in long-term estrogen-deprived human breast cancer cells. Endocrinology 139(10):4164–4174. https://doi.org/10.1210/endo.139.10.6229

    Article  CAS  PubMed  Google Scholar 

  6. Sikora MJ, Cordero KE, Larios JM, Johnson MD, Lippman ME, Rae JM (2009) The androgen metabolite 5alpha-androstane-3beta,17beta-diol (3betaAdiol) induces breast cancer growth via estrogen receptor: implications for aromatase inhibitor resistance. Breast Cancer Res Treat 115(2):289–296. https://doi.org/10.1007/s10549-008-0080-8

    Article  CAS  PubMed  Google Scholar 

  7. Toy W, Shen Y, Won H, Green B, Sakr RA, Will M, Li Z, Gala K, Fanning S, King TA, Hudis C, Chen D, Taran T, Hortobagyi G, Greene G, Berger M, Baselga J, Chandarlapaty S (2013) ESR1 ligand-binding domain mutations in hormone-resistant breast cancer. Nat Genet 45(12):1439–1445. https://doi.org/10.1038/ng.2822

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Robinson DR, Wu YM, Vats P, Su F, Lonigro RJ, Cao X, Kalyana-Sundaram S, Wang R, Ning Y, Hodges L, Gursky A, Siddiqui J, Tomlins SA, Roychowdhury S, Pienta KJ, Kim SY, Roberts JS, Rae JM, Van Poznak CH, Hayes DF, Chugh R, Kunju LP, Talpaz M, Schott AF, Chinnaiyan AM (2013) Activating ESR1 mutations in hormone-resistant metastatic breast cancer. Nat Genet 45(12):1446–1451. https://doi.org/10.1038/ng.2823

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Zhang QX, Borg A, Wolf DM, Oesterreich S, Fuqua SA (1997) An estrogen receptor mutant with strong hormone-independent activity from a metastatic breast cancer. Cancer Res 57:1244–1249

    CAS  PubMed  Google Scholar 

  10. Martin LA, Ribas R, Simigdala N, Schuster E, Pancholi S, Tenev T, Gellert P, Buluwela L, Harrod A, Thornhill A, Nikitorowicz-Buniak J, Bhamra A, Turgeon MO, Poulogiannis G, Gao Q, Martins V, Hills M, Garcia-Murillas I, Fribbens C, Patani N, Li Z, Sikora MJ, Turner N, Zwart W, Oesterreich S, Carroll J, Ali S, Dowsett M (2017) Discovery of naturally occurring ESR1 mutations in breast cancer cell lines modelling endocrine resistance. Nat Commun 8(1):1865. https://doi.org/10.1038/s41467-017-01864-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Wang P, Bahreini A, Gyanchandani R, Lucas PC, Hartmaier RJ, Watters RJ, Jonnalagadda AR, Trejo Bittar HE, Berg A, Hamilton RL, Kurland BF, Weiss KR, Mathew A, Leone JP, Davidson NE, Nikiforova MN, Brufsky AM, Ambros TF, Stern AM, Puhalla SL, Lee AV, Oesterreich S (2016) Sensitive detection of mono- and polyclonal ESR1 mutations in primary tumors, metastatic lesions, and cell-free DNA of breast cancer patients. Clin Cancer Res. https://doi.org/10.1158/1078-0432.ccr-15-1534

    Article  PubMed  PubMed Central  Google Scholar 

  12. Harrod A, Fulton J, Nguyen VTM, Periyasamy M, Ramos-Garcia L, Lai CF, Metodieva G, de Giorgio A, Williams RL, Santos DB, Gomez PJ, Lin ML, Metodiev MV, Stebbing J, Castellano L, Magnani L, Coombes RC, Buluwela L, Ali S (2017) Genomic modelling of the ESR1 Y537S mutation for evaluating function and new therapeutic approaches for metastatic breast cancer. Oncogene 36(16):2286–2296. https://doi.org/10.1038/onc.2016.382

    Article  CAS  PubMed  Google Scholar 

  13. Li S, Shen D, Shao J, Crowder R, Liu W, Prat A, He X, Liu S, Hoog J, Lu C, Ding L, Griffith OL, Miller C, Larson D, Fulton RS, Harrison M, Mooney T, McMichael JF, Luo J, Tao Y, Goncalves R, Schlosberg C, Hiken JF, Saied L, Sanchez C, Giuntoli T, Bumb C, Cooper C, Kitchens RT, Lin A, Phommaly C, Davies SR, Zhang J, Kavuri MS, McEachern D, Dong YY, Ma C, Pluard T, Naughton M, Bose R, Suresh R, McDowell R, Michel L, Aft R, Gillanders W, DeSchryver K, Wilson RK, Wang S, Mills GB, Gonzalez-Angulo A, Edwards JR, Maher C, Perou CM, Mardis ER, Ellis MJ (2013) Endocrine-therapy-resistant ESR1 variants revealed by genomic characterization of breast-cancer-derived xenografts. Cell Rep 4(6):1116–1130. https://doi.org/10.1016/j.celrep.2013.08.022

    Article  CAS  PubMed  Google Scholar 

  14. Toy W, Weir H, Razavi P, Lawson M, Goeppert AU, Mazzola AM, Smith A, Wilson J, Morrow C, Wong WL, De Stanchina E, Carlson KE, Martin TS, Uddin S, Li Z, Fanning S, Katzenellenbogen JA, Greene G, Baselga J, Chandarlapaty S (2017) Activating ESR1 mutations differentially affect the efficacy of ER antagonists. Cancer Discov 7(3):277–287. https://doi.org/10.1158/2159-8290.CD-15-1523

    Article  CAS  PubMed  Google Scholar 

  15. Weis KE, Ekena K, Thomas JA, Lazennec G, Katzenellenbogen BS (1996) Constitutively active human estrogen receptors containing amino acid substitutions for tyrosine 537 in the receptor protein. Mol Endocrinol 10:1388–1398

    CAS  PubMed  Google Scholar 

  16. Long X, Nephew KP (2006) Fulvestrant (ICI 182,780)-dependent interacting proteins mediate immobilization and degradation of estrogen receptor-alpha. J Biol Chem 281(14):9607–9615. https://doi.org/10.1074/jbc.M510809200

    Article  CAS  PubMed  Google Scholar 

  17. Ingle JN, Suman VJ, Rowland KM, Mirchandani D, Bernath AM, Camoriano JK, Fishkin PA, Nikcevich DA, Perez EA, North Central Cancer Treatment Group Trial, N (2006) Fulvestrant in women with advanced breast cancer after progression on prior aromatase inhibitor therapy: North Central Cancer Treatment Group Trial N0032. J Clin Oncol 24(7):1052–1056. https://doi.org/10.1200/JCO.2005.04.1053

    Article  CAS  PubMed  Google Scholar 

  18. Zhou B, Hu J, Xu F, Chen Z, Bai L, Fernandez-Salas E, Lin M, Liu L, Yang CY, Zhao Y, McEachern D, Przybranowski S, Wen B, Sun D, Wang S (2017) Discovery of a small-molecule degrader of bromodomain and extra-terminal (BET) proteins with picomolar cellular potencies and capable of achieving tumor regression. J Med Chem. https://doi.org/10.1021/acs.jmedchem.6b01816

    Article  PubMed  PubMed Central  Google Scholar 

  19. Bai L, Zhou B, Yang CY, Ji J, McEachern D, Przybranowski S, Jiang H, Hu J, Xu F, Zhao Y, Liu L, Fernandez-Salas E, Xu J, Dou Y, Wen B, Sun D, Meagher J, Stuckey J, Hayes DF, Li S, Ellis MJ, Wang S (2017) Targeted degradation of BET proteins in triple-negative breast cancer. Cancer Res 77(9):2476–2487. https://doi.org/10.1158/0008-5472.CAN-16-2622

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Winter GE, Buckley DL, Paulk J, Roberts JM, Souza A, Dhe-Paganon S, Bradner JE (2015) Phthalimide conjugation as a strategy for in vivo target protein degradation. Science 348(6241):1376–1381. https://doi.org/10.1126/science.aab1433

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Sakamoto KM, Kim KB, Kumagai A, Mercurio F, Crews CM, Deshaies RJ (2001) Protacs: chimeric molecules that target proteins to the Skp1-Cullin-F box complex for ubiquitination and degradation. Proc Natl Acad Sci USA 98(15):8554–8559. https://doi.org/10.1073/pnas.141230798

    Article  CAS  PubMed  Google Scholar 

  22. Gadd MS, Testa A, Lucas X, Chan KH, Chen W, Lamont DJ, Zengerle M, Ciulli A (2017) Structural basis of PROTAC cooperative recognition for selective protein degradation. Nat Chem Biol 13(5):514–521. https://doi.org/10.1038/nchembio.2329

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Hu J, Hu B, Wang M, Xu F, Miao B, Yang C-Y, Wang M, Liu Z, Hayes DF, Chinnaswamy K, Delproposto J, Stuckey J, Wang S (2019) Discovery of ERD-308 as a highly potent proteolysis targeting chimera (PROTAC) degrader of estrogen receptor (ER). J Med Chem 62(3):1420–1442. https://doi.org/10.1021/acs.jmedchem.8b01572

    Article  CAS  PubMed  Google Scholar 

  24. Rae JM, Johnson MD, Scheys JO, Cordero KE, Larios JM, Lippman ME (2005) GREB 1 is a critical regulator of hormone dependent breast cancer growth. Breast Cancer Res Treat 92(2):141–149. https://doi.org/10.1007/s10549-005-1483-4

    Article  CAS  PubMed  Google Scholar 

  25. Ran FA, Hsu PD, Wright J, Agarwala V, Scott DA, Zhang F (2013) Genome engineering using the CRISPR-Cas9 system. Nat Protoc 8(11):2281–2308. https://doi.org/10.1038/nprot.2013.143

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Johnson MD, Zuo H, Lee KH, Trebley JP, Rae JM, Weatherman RV, Desta Z, Flockhart DA, Skaar TC (2004) Pharmacological characterization of 4-hydroxy-N-desmethyl tamoxifen, a novel active metabolite of tamoxifen. Breast Cancer Res Treat 85(2):151–159. https://doi.org/10.1023/B:BREA.0000025406.31193.e8

    Article  CAS  PubMed  Google Scholar 

  27. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods 25(4):402–408. https://doi.org/10.1006/meth.2001.1262

    Article  CAS  PubMed  Google Scholar 

  28. Mohammed H, D'Santos C, Serandour AA, Ali HR, Brown GD, Atkins A, Rueda OM, Holmes KA, Theodorou V, Robinson JL, Zwart W, Saadi A, Ross-Innes CS, Chin SF, Menon S, Stingl J, Palmieri C, Caldas C, Carroll JS (2013) Endogenous purification reveals GREB1 as a key estrogen receptor regulatory factor. Cell Rep 3(2):342–349. https://doi.org/10.1016/j.celrep.2013.01.010

    Article  CAS  PubMed  Google Scholar 

  29. Sikora MJ, Strumba V, Lippman ME, Johnson MD, Rae JM (2012) Mechanisms of estrogen-independent breast cancer growth driven by low estrogen concentrations are unique versus complete estrogen deprivation. Breast Cancer Res Treat 134(3):1027–1039. https://doi.org/10.1007/s10549-012-2032-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Johnston SR, Kilburn LS, Ellis P, Dodwell D, Cameron D, Hayward L, Im YH, Braybrooke JP, Brunt AM, Cheung KL, Jyothirmayi R, Robinson A, Wardley AM, Wheatley D, Howell A, Coombes G, Sergenson N, Sin HJ, Folkerd E, Dowsett M, Bliss JM, Feai S (2013) Fulvestrant plus anastrozole or placebo versus exemestane alone after progression on non-steroidal aromatase inhibitors in postmenopausal patients with hormone-receptor-positive locally advanced or metastatic breast cancer (SoFEA): a composite, multicentre, phase 3 randomised trial. Lancet Oncol 14(10):989–998. https://doi.org/10.1016/S1470-2045(13)70322-X

    Article  CAS  PubMed  Google Scholar 

  31. Mehta RS, Barlow WE, Albain KS, Vandenberg TA, Dakhil SR, Tirumali NR, Lew DL, Hayes DF, Gralow JR, Livingston RB, Hortobagyi GN (2012) Combination anastrozole and fulvestrant in metastatic breast cancer. N Engl J Med 367(5):435–444. https://doi.org/10.1056/NEJMoa1201622

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Fribbens C, O'Leary B, Kilburn L, Hrebien S, Garcia-Murillas I, Beaney M, Cristofanilli M, Andre F, Loi S, Loibl S, Jiang J, Bartlett CH, Koehler M, Dowsett M, Bliss JM, Johnston SR, Turner NC (2016) Plasma ESR1 mutations and the treatment of estrogen receptor-positive advanced breast cancer. J Clin Oncol 34(25):2961–2968. https://doi.org/10.1200/JCO.2016.67.3061

    Article  CAS  PubMed  Google Scholar 

  33. Paoletti C, Cani AK, Larios JM, Hovelson DH, Aung K, Darga EP, Cannell EM, Baratta PJ, Liu CJ, Chu D, Yazdani M, Blevins AR, Sero V, Tokudome N, Thomas DG, Gersch C, Schott AF, Wu YM, Lonigro R, Robinson DR, Chinnaiyan AM, Bischoff FZ, Johnson MD, Park BH, Hayes DF, Rae JM, Tomlins SA (2018) Comprehensive mutation and copy number profiling in archived circulating breast cancer tumor cells documents heterogeneous resistance mechanisms. Cancer Res 78(4):1110–1122. https://doi.org/10.1158/0008-5472.CAN-17-2686

    Article  CAS  PubMed  Google Scholar 

  34. Schiavon G, Hrebien S, Garcia-Murillas I, Cutts RJ, Pearson A, Tarazona N, Fenwick K, Kozarewa I, Lopez-Knowles E, Ribas R, Nerurkar A, Osin P, Chandarlapaty S, Martin LA, Dowsett M, Smith IE, Turner NC (2015) Analysis of ESR1 mutation in circulating tumor DNA demonstrates evolution during therapy for metastatic breast cancer. Sci Transl Med 7(313):313–317. https://doi.org/10.1126/scitranslmed.aac7551

    Article  CAS  Google Scholar 

  35. Jeselsohn R, Yelensky R, Buchwalter G, Frampton G, Meric-Bernstam F, Gonzalez-Angulo AM, Ferrer-Lozano J, Perez-Fidalgo JA, Cristofanilli M, Gomez H, Arteaga CL, Giltnane J, Balko JM, Cronin MT, Jarosz M, Sun J, Hawryluk M, Lipson D, Otto G, Ross JS, Dvir A, Soussan-Gutman L, Wolf I, Rubinek T, Gilmore L, Schnitt S, Come SE, Pusztai L, Stephens P, Brown M, Miller VA (2014) Emergence of constitutively active estrogen receptor-alpha mutations in pretreated advanced estrogen receptor-positive breast cancer. Clin Cancer Res 20(7):313ra182. https://doi.org/10.1158/1078-0432.CCR-13-2332

    Article  CAS  Google Scholar 

  36. Weir HM, Bradbury RH, Lawson M, Rabow AA, Buttar D, Callis RJ, Curwen JO, de Almeida C, Ballard P, Hulse M, Donald CS, Feron LJ, Karoutchi G, MacFaul P, Moss T, Norman RA, Pearson SE, Tonge M, Davies G, Walker GE, Wilson Z, Rowlinson R, Powell S, Sadler C, Richmond G, Ladd B, Pazolli E, Mazzola AM, D'Cruz C, De Savi C (2016) AZD9496: An oral estrogen receptor inhibitor that blocks the growth of ER-positive and ESR1-mutant breast tumors in preclinical models. Cancer Res 76(11):3307–3318. https://doi.org/10.1158/0008-5472.CAN-15-2357

    Article  CAS  PubMed  Google Scholar 

  37. Wang Y, Lonard DM, Yu Y, Chow DC, Palzkill TG, Wang J, Qi R, Matzuk AJ, Song X, Madoux F, Hodder P, Chase P, Griffin PR, Zhou S, Liao L, Xu J, O'Malley BW (2014) Bufalin is a potent small-molecule inhibitor of the steroid receptor coactivators SRC-3 and SRC-1. Cancer Res 74(5):1506–1517. https://doi.org/10.1158/0008-5472.CAN-13-2939

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Reinert T, Saad ED, Barrios CH, Bines J (2017) Clinical implications of ESR1 mutations in hormone receptor-positive advanced breast cancer. Front Oncol 7:26. https://doi.org/10.3389/fonc.2017.00026

    Article  PubMed  PubMed Central  Google Scholar 

  39. Wardell SE, Ellis MJ, Alley HM, Eisele K, VanArsdale T, Dann SG, Arndt KT, Primeau T, Griffin E, Shao J, Crowder R, Lai JP, Norris JD, McDonnell DP, Li S (2015) Efficacy of SERD/SERM hybrid-CDK4/6 inhibitor combinations in models of endocrine therapy-resistant breast cancer. Clin Cancer Res 21(22):5121–5130. https://doi.org/10.1158/1078-0432.CCR-15-0360

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the University of Michigan Biomedical Research Sequencing Core for their support. We acknowledge the assistance provided by the GUMC Tissue Culture Shared Resource, which is supported in part by the Lombardi Comprehensive Cancer Center support grant (NIH/NCI Grant P30-CA051008).

Funding

Research reported in this publication was supported in part by the National Institute of Environmental Health Sciences of the National Institutes of Health under Award Number T32ES007062 (TLG), the Breast Cancer Research Foundation (BCRF) (N003173 to JMR), and the University of Michigan Rogel Cancer Center Breast Strategic Fund (JMR, SW, and DFH). The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James M. Rae.

Ethics declarations

Conflict of interest

The University of Michigan has filed a patent application on ERD-148 and its related ER degraders. S.W. and J.H. are co-inventors on the patent application, which has been licensed to Oncopia Therapeutics, Inc. S.W. is a co-founder of Oncopia and a paid consultant. S.W. and the University of Michigan own stock in Oncopia. The University of Michigan has received a research contract from Oncopia for which S.W. serves as the principal investigator.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The original version of this article was revised: The spelling of the sixth author’s given name was incorrectly published. The author name was corrected.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1189 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gonzalez, T.L., Hancock, M., Sun, S. et al. Targeted degradation of activating estrogen receptor α ligand-binding domain mutations in human breast cancer. Breast Cancer Res Treat 180, 611–622 (2020). https://doi.org/10.1007/s10549-020-05564-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10549-020-05564-y

Keywords

Navigation