Skip to main content

Advertisement

Log in

Combining the tumor-stroma ratio with tumor-infiltrating lymphocytes improves the prediction of pathological complete response in breast cancer patients

  • Original Laboratory Investigation
  • Published:
Breast Cancer Research and Treatment Aims and scope Submit manuscript

Abstract

Purpose

The tumor-stroma ratio (TSR) is a common histological parameter that measures stromal abundance and is prognostic in breast cancer (BC). However, more evidence is needed on the predictive value of the TSR for the pathological complete response (pCR) to neoadjuvant chemotherapy (NAC). The purpose of this study was to determine the importance of the TSR in predicting pCR in NAC settings.

Method

We evaluated the TSR on pretreatment biopsies of 912 BC patients from four independent Chinese hospitals and investigated the potential value of the TSR for predicting pCR. Meanwhile, stromal tumor-infiltrating lymphocytes (sTILs) were assessed, and we evaluated the predictive value of the combination of sTILs and TSR (TSRILs).

Results

Patients with low stroma showed a higher pCR rate than those with high stroma among the four independent hospitals, and in multivariate analysis, the TSR was proven to be an independent predictor for pCR to NAC with an odds ratio of 1.945 (95% CI 1.230–3.075, P = 0.004). Moreover, we found that TSRILs could improve the area under the curve (AUC) for predicting pCR from 0.750 to 0.785 (P = 0.039); especially in HER2-negative BCs, the inclusion of TSRILs increased the AUC from 0.801 to 0.835 in the discovery dataset (P = 0.048) and 0.734 to 0.801 in the validation dataset (P = 0.003).

Conclusion

TSR and sTILs can be easily measured in pathological routines and provide predictive information without additional cost; with more evidence from clinical trials, TSRILs could be a candidate to better stratify patients in NAC settings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

The data used and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Siegel RL, Miller KD, Fuchs HE et al (2021) Cancer statistics, 2021. CA Cancer J Clin 71(1):7–33

    Article  PubMed  Google Scholar 

  2. Derks MGM, Van De Velde CJH (2018) Neoadjuvant chemotherapy in breast cancer: more than just downsizing. Lancet Oncol 19(1):2–3

    Article  PubMed  Google Scholar 

  3. Von Minckwitz G, Blohmer JU, Costa SD et al (2013) Response-guided neoadjuvant chemotherapy for breast cancer. J Clin Oncol 31(29):3623–3630

    Article  Google Scholar 

  4. Cortazar P, Zhang L, Untch M et al (2014) Pathological complete response and long-term clinical benefit in breast cancer: the CTNeoBC pooled analysis. Lancet 384(9938):164–172

    Article  PubMed  Google Scholar 

  5. Goorts B, Van Nijnatten TJ, De Munck L et al (2017) Clinical tumor stage is the most important predictor of pathological complete response rate after neoadjuvant chemotherapy in breast cancer patients. Breast Cancer Res Treat 163(1):83–91

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Denkert C, Von Minckwitz G, Darb-Esfahani S et al (2018) Tumour-infiltrating lymphocytes and prognosis in different subtypes of breast cancer: a pooled analysis of 3771 patients treated with neoadjuvant therapy. Lancet Oncol 19(1):40–50

    Article  PubMed  Google Scholar 

  7. Ali HR, Dariush A, Thomas J et al (2017) Lymphocyte density determined by computational pathology validated as a predictor of response to neoadjuvant chemotherapy in breast cancer: secondary analysis of the ARTemis trial. Ann Oncol 28(8):1832–1835

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Denkert C, Loibl S, Noske A et al (2010) Tumor-associated lymphocytes as an independent predictor of response to neoadjuvant chemotherapy in breast cancer. J Clin Oncol 28(1):105–113

    Article  CAS  PubMed  Google Scholar 

  9. Carey LA, Berry DA, Cirrincione CT et al (2016) Molecular heterogeneity and response to neoadjuvant human epidermal growth factor receptor 2 targeting in CALGB 40601, a randomized phase III trial of paclitaxel plus trastuzumab with or without lapatinib. J Clin Oncol 34(6):542–549

    Article  CAS  PubMed  Google Scholar 

  10. Abdel-Fatah TMA, Agarwal D, Liu DX et al (2016) SPAG5 as a prognostic biomarker and chemotherapy sensitivity predictor in breast cancer: a retrospective, integrated genomic, transcriptomic, and protein analysis. Lancet Oncol 17(7):1004–1018

    Article  CAS  PubMed  Google Scholar 

  11. Pineda B, Diaz-Lagares A, Pérez-Fidalgo JA et al (2019) A two-gene epigenetic signature for the prediction of response to neoadjuvant chemotherapy in triple-negative breast cancer patients. Clin Epigenet 11(1):33

    Article  Google Scholar 

  12. Alba E, Rueda OM, Lluch A et al (2018) Integrative cluster classification to predict pathological complete response to neoadjuvant chemotherapy in early breast cancer. J Clin Oncol 36(15_suppl):579

    Article  Google Scholar 

  13. Farmer P, Bonnefoi H, Anderle P et al (2009) A stroma-related gene signature predicts resistance to neoadjuvant chemotherapy in breast cancer. Nat Med 15(1):68–74

    Article  CAS  PubMed  Google Scholar 

  14. Lee H, Lee DE, Park S et al (2019) Predicting response to neoadjuvant chemotherapy in patients with breast cancer: combined statistical modeling using clinicopathological factors and FDG PET/CT texture parameters. Clin Nucl Med 44(1):21–29

    Article  PubMed  Google Scholar 

  15. Li F, Yang Y, Wei Y et al (2021) Deep learning-based predictive biomarker of pathological complete response to neoadjuvant chemotherapy from histological images in breast cancer. J Transl Med 19(1):348

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Lips EH, Mulder L, De Ronde JJ et al (2013) Breast cancer subtyping by immunohistochemistry and histological grade outperforms breast cancer intrinsic subtypes in predicting neoadjuvant chemotherapy response. Breast Cancer Res Treat 140(1):63–71

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Alba E, Lluch A, Ribelles N et al (2016) High proliferation predicts pathological complete response to neoadjuvant chemotherapy in early breast cancer. Oncologist 21(6):778

    Article  PubMed  PubMed Central  Google Scholar 

  18. Hale MD, Hayden JD, Grabsch HI (2013) Tumour-microenvironment interactions: role of tumour stroma and proteins produced by cancer-associated fibroblasts in chemotherapy response. Cell Oncol (Dordr) 36(2):95–112

    Article  CAS  PubMed  Google Scholar 

  19. Dittmer J, Leyh B (2015) The impact of tumor stroma on drug response in breast cancer. Semin Cancer Biol 31:3–15

    Article  CAS  PubMed  Google Scholar 

  20. Ireland LV, Mielgo A (2018) Macrophages and fibroblasts, key players in cancer chemoresistance. Front Cell Dev Biol 6:131

    Article  PubMed  PubMed Central  Google Scholar 

  21. Su S, Chen J, Yao H et al (2018) CD10(+)GPR77(+) cancer-associated fibroblasts promote cancer formation and chemoresistance by sustaining cancer stemness. Cell 172(4):841–56.e16

    Article  CAS  PubMed  Google Scholar 

  22. Xing H, Weng D, Chen G et al (2008) Activation of fibronectin/PI-3K/Akt2 leads to chemoresistance to docetaxel by regulating survivin protein expression in ovarian and breast cancer cells. Cancer Lett 261(1):108–119

    Article  CAS  PubMed  Google Scholar 

  23. Mesker WE, Junggeburt JM, Szuhai K et al (2007) The carcinoma-stromal ratio of colon carcinoma is an independent factor for survival compared to lymph node status and tumor stage. Cell Oncol 29(5):387–398

    PubMed  PubMed Central  Google Scholar 

  24. De Kruijf EM, Van Nes JG, Van De Velde CJ et al (2011) Tumor-stroma ratio in the primary tumor is a prognostic factor in early breast cancer patients, especially in triple-negative carcinoma patients. Breast Cancer Res Treat 125(3):687–696

    Article  PubMed  Google Scholar 

  25. Dekker TJ, Van De Velde CJ, Van Pelt GW et al (2013) Prognostic significance of the tumor-stroma ratio: validation study in node-negative premenopausal breast cancer patients from the EORTC perioperative chemotherapy (POP) trial (10854). Breast Cancer Res Treat 139(2):371–379

    Article  CAS  PubMed  Google Scholar 

  26. Roeke T, Sobral-Leite M, Dekker TJA et al (2017) The prognostic value of the tumour-stroma ratio in primary operable invasive cancer of the breast: a validation study. Breast Cancer Res Treat 166(2):435–445

    Article  CAS  PubMed  Google Scholar 

  27. Vangangelt KMH, Tollenaar LSA, Van Pelt GW et al (2018) The prognostic value of tumor-stroma ratio in tumor-positive axillary lymph nodes of breast cancer patients. Int J Cancer 143(12):3194–3200

    Article  CAS  PubMed  Google Scholar 

  28. Vangangelt KMH, Van Pelt GW, Engels CC et al (2018) Prognostic value of tumor-stroma ratio combined with the immune status of tumors in invasive breast carcinoma. Breast Cancer Res Treat 168(3):601–612

    Article  CAS  PubMed  Google Scholar 

  29. Vangangelt KMH, Green AR, Heemskerk IMF et al (2020) The prognostic value of the tumor-stroma ratio is most discriminative in patients with grade III or triple-negative breast cancer. Int J Cancer 146(8):2296–2304

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Kramer CJH, Vangangelt KMH, Van Pelt GW et al (2019) The prognostic value of tumour-stroma ratio in primary breast cancer with special attention to triple-negative tumours: a review. Breast Cancer Res Treat 173(1):55–64

    Article  CAS  PubMed  Google Scholar 

  31. Moorman AM, Vink R, Heijmans HJ et al (2012) The prognostic value of tumour-stroma ratio in triple-negative breast cancer. Eur J Surg Oncol 38(4):307–313

    Article  CAS  PubMed  Google Scholar 

  32. Yan D, Ju X, Luo B et al (2022) Tumour stroma ratio is a potential predictor for 5-year disease-free survival in breast cancer. BMC Cancer 22(1):1082

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Hagenaars SC, De Groot S, Cohen D et al (2021) Tumor-stroma ratio is associated with Miller-Payne score and pathological response to neoadjuvant chemotherapy in HER2-negative early breast cancer. Int J Cancer 149(5):1181–1188

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Mallya V, Singh V, Kaur N et al (2020) Does tumor stroma ratio of breast cancer trucut biopsy determine response to neoadjuvant therapy? Indian J Pathol Microbiol 63(Supplement):S113–S116

    Article  PubMed  Google Scholar 

  35. Salgado R, Denkert C, Demaria S et al (2015) The evaluation of tumor-infiltrating lymphocytes (TILs) in breast cancer: recommendations by an International TILs Working Group 2014. Ann Oncol 26(2):259–271

    Article  CAS  PubMed  Google Scholar 

  36. Hagenaars SC, Vangangelt KMH, Van Pelt GW et al (2022) Standardization of the tumor-stroma ratio scoring method for breast cancer research. Breast Cancer Res Treat 193(3):545–553

    Article  PubMed  PubMed Central  Google Scholar 

  37. Le MK, Odate T, Kawai M et al (2023) Investigating the role of core needle biopsy in evaluating tumor-stroma ratio (TSR) of invasive breast cancer: a retrospective study. Breast Cancer Res Treat 197(1):113–121

    Article  CAS  PubMed  Google Scholar 

  38. Rindi G, Klimstra DS, Abedi-Ardekani B et al (2018) A common classification framework for neuroendocrine neoplasms: an International Agency for Research on Cancer (IARC) and World Health Organization (WHO) expert consensus proposal. Mod Pathol 31(12):1770–1786

    Article  PubMed  PubMed Central  Google Scholar 

  39. Sonnenblick A, Salmon-Divon M, Salgado R et al (2020) Reactive stroma and trastuzumab resistance in HER2-positive early breast cancer. Int J Cancer 147(1):266–276

    Article  CAS  PubMed  Google Scholar 

  40. Rybinska I, Sandri M, Bianchi F et al (2020) Extracellular matrix features discriminate aggressive HER2-positive breast cancer patients who benefit from trastuzumab treatment. Cells 9(2):434

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Fernández-Nogueira P, Mancino M, Fuster G et al (2020) Tumor-associated fibroblasts promote HER2-targeted therapy resistance through FGFR2 activation. Clin Cancer Res 26(6):1432–1448

    Article  PubMed  Google Scholar 

  42. Li F, Yang Y, Wei Y et al (2022) Predicting neoadjuvant chemotherapy benefit using deep learning from stromal histology in breast cancer. NPJ Breast Cancer 8(1):124

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Gujam FJ, Edwards J, Mohammed ZM et al (2014) The relationship between the tumour stroma percentage, clinicopathological characteristics and outcome in patients with operable ductal breast cancer. Br J Cancer 111(1):157–165

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

The study was supported by the 1·3·5 project for disciplines of excellence (ZYGD18012) and the Technological Innovation Project of Chengdu New Industrial Technology Research Institute (2017-CY02–00026-GX).

Author information

Authors and Affiliations

Authors

Contributions

FL, HC, and HB designed this study. YW, YZ, JF, XX, and FL contributed to the patient recruitment from four hospitals. XL and FL performed the evaluation of pathological parameters. FL and HC analyzed the data and wrote the draft. HB and HC edited the draft.

Corresponding author

Correspondence to Hong Bu.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Ethical approval

Our study was approved by the ethical committee of West China Hospital, Sichuan University (No.764 in 2021), and abided with the Declaration of Helsinki before using tissue samples for scientific researches purpose only. The written informed consent was waived by the ethical committee for this retrospective study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 624 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, F., Chen, H., Lu, X. et al. Combining the tumor-stroma ratio with tumor-infiltrating lymphocytes improves the prediction of pathological complete response in breast cancer patients. Breast Cancer Res Treat 202, 173–183 (2023). https://doi.org/10.1007/s10549-023-07026-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10549-023-07026-7

Keywords

Navigation