Skip to main content

Advertisement

Log in

Abundance of reactive oxygen species (ROS) is associated with tumor aggressiveness, immune response, and worse survival in breast cancer

  • Preclinical study
  • Published:
Breast Cancer Research and Treatment Aims and scope Submit manuscript

Abstract

Purpose

Reactive oxygen species (ROS) are oxygen-containing molecules that have high reactivity and play roles in protection or harm the cancer cells. We aimed to clarify the clinical relevance of ROS in breast cancer (BC) tumor microenvironment (TME). We hypothesized that it is associated with worse BC patient outcomes.

Methods

ROS score was generated by Gene Set Variation Analysis of Hallmark ROS pathway gene set and a total of 6245 BC patients were analyzed.

Results

High ROS BC significantly enriched cell proliferation-related gene sets (MYC targets v1 and v2, G2M checkpoint, E2F targets), pro-cancer-related gene sets (DNA repair, unfolded protein response, MTORC1 signaling, PI3K/AKT/MTOR signaling, glycolysis, and oxidative phosphorylation), immune-related gene sets (inflammatory response, allograft rejection, interferon-α and γ responses, complement, and IL6/JAK/STAT3 signaling), and infiltrated immune cells (CD4+ memory and CD8+ T cells, Th1 and Th2, dendritic cells, Tregs, M1 and M2 macrophages) and B cells, as well as elevated cytolytic activity consistently in both METABRIC and GSE96058 cohorts. Cancer cells were the major source of ROS in BC TME of single-cell sequence (GSE75688) cohort. High ROS was associated with intratumor heterogeneity, homologous recombination defects, mutation rates, and neoantigens, and with clinical aggressiveness in AJCC stage, Nottingham grade and Ki67 expression, as well as worse overall survival in both GSE96058 and METABRIC, and with worse disease-specific survival in METABRIC.

Conclusion

Abundant ROS in BC patients is associated with abundant mutations, aggressive cancer biology, immune response, and worse survival.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

The datasets generated during and analyzed during the current study are available from the original source as they are publicly available deidentified databases.

Abbreviations

AJCC:

American Joint Committee on Cancer

DFS:

Disease-free survival

DSS:

Disease-specific survival

ER:

Estrogen receptor

FDR:

False discovery rate

GSEA:

Gene set enrichment analysis

GSVA:

Gene set variation analysis

HER2:

Human epidermal growth factor receptor 2

METABRIC:

Molecular Taxonomy of Breast Cancer International Consortium

NES:

Normalized enrichment score

OS:

Overall survival

TNBC:

Triple-negative breast cancer

References

  1. Zhou Z, Ni K, Deng H, Chen X (2020) Dancing with reactive oxygen species generation and elimination in nanotheranostics for disease treatment. Adv Drug Deliv Rev 158:73–90

    Article  CAS  PubMed  Google Scholar 

  2. Schieber M, Chandel NS (2014) ROS function in redox signaling and oxidative stress. Curr Biol 24:R453-462

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Circu ML, Aw TY (2010) Reactive oxygen species, cellular redox systems, and apoptosis. Free Radic Biol Med 48:749–762

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Ray PD, Huang BW, Tsuji Y (2012) Reactive oxygen species (ROS) homeostasis and redox regulation in cellular signaling. Cell Signal 24:981–990

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Jenkins T, Gouge J (2021) Nrf2 in cancer detoxifying enzymes and cell death programs. Antioxidants 10:1030

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Kimmelman AC (2011) The dynamic nature of autophagy in cancer. Genes Dev 25:1999–2010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Shimi T, Butin-Israeli V, Adam SA, Hamanaka RB, Goldman AE, Lucas CA, Shumaker DK, Kosak ST, Chandel NS, Goldman RD (2011) The role of nuclear lamin B1 in cell proliferation and senescence. Genes Dev 25:2579–2593

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Martinon F (2010) Signaling by ROS drives inflammasome activation. Eur J Immunol 40:616–619

    Article  CAS  PubMed  Google Scholar 

  9. Tschopp J, Schroder K (2010) NLRP3 inflammasome activation: the convergence of multiple signalling pathways on ROS production? Nat Rev Immunol 10:210–215

    Article  CAS  PubMed  Google Scholar 

  10. Heiden MGV, Cantley LC, Thompson CB (2009) Understanding the Warburg effect: the metabolic requirements of cell proliferation. Science 324:1029–1033

    Article  CAS  Google Scholar 

  11. Malla R, Surepalli N, Farran B, Malhotra SV, Nagaraju GP (2021) Reactive oxygen species (ROS): critical roles in breast tumor microenvironment. Crit Rev Oncol Hematol 160:103285

    Article  PubMed  Google Scholar 

  12. Kalyanaraman B, Cheng G, Hardy M, Ouari O, Bennett B, Zielonka J (2018) Teaching the basics of reactive oxygen species and their relevance to cancer biology: mitochondrial reactive oxygen species detection, redox signaling, and targeted therapies. Redox Biol 15:347–362

    Article  CAS  PubMed  Google Scholar 

  13. Sajadimajd S, Yazdanparast R (2015) Differential behaviors of trastuzumab-sensitive and -resistant SKBR3 cells treated with menadione reveal the involvement of Notch1/Akt/FOXO1 signaling elements. Mol Cell Biochem 408:89–102

    Article  CAS  PubMed  Google Scholar 

  14. Takahashi H, Asaoka M, Yan L, Rashid OM, Oshi M, Ishikawa T, Nagahashi M, Takabe K (2020) Biologically aggressive phenotype and anti-cancer immunity counterbalance in breast cancer with high mutation rate. Sci Rep 10:1852

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Liberzon A, Birger C, Thorvaldsdóttir H, Ghandi M, Mesirov JP, Tamayo P (2015) The molecular signatures database (MSigDB) hallmark gene set collection. Cell Syst 1:417–425

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Oshi M, Newman S, Tokumaru Y, Yan L, Matsuyama R, Endo I, Katz MHG, Takabe K (2020) High G2M pathway score pancreatic cancer is associated with worse survival, particularly after margin-positive (R1 or R2) resection. Cancers 12:2871

    Article  CAS  PubMed Central  Google Scholar 

  17. Oshi M, Patel A, Le L, Tokumaru Y, Yan L, Matsuyama R, Endo I, Takabe K (2021) G2M checkpoint pathway alone is associated with drug response and survival among cell proliferation-related pathways in pancreatic cancer. Am J Cancer Res 11:3070–3084

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Oshi M, Satyananda V, Angarita FA, Kim TH, Tokumaru Y, Yan L, Matsuyama R, Endo I, Nagahashi M, Takabe K (2021) Angiogenesis is associated with an attenuated tumor microenvironment, aggressive biology, and worse survival in gastric cancer patients. Am J Cancer Res 11:1659–1671

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Oshi M, Kim TH, Tokumaru Y, Yan L, Matsuyama R, Endo I, Cherkassky L, Takabe K (2021) Enhanced DNA repair pathway is associated with cell proliferation and worse survival in Hepatocellular Carcinoma (HCC). Cancers 13:323

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Patel A, Oshi M, Yan L, Matsuyama R, Endo I, Takabe K (2021) The unfolded protein response is associated with cancer proliferation and worse survival in hepatocellular carcinoma. Cancers 13:4443

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Oshi M, Tokumaru Y, Angarita FA, Yan L, Matsuyama R, Endo I, Takabe K (2020) Degree of early estrogen response predict survival after endocrine therapy in primary and metastatic ER-positive breast cancer. Cancers 12:3557

    Article  CAS  PubMed Central  Google Scholar 

  22. Tokumaru Y, Oshi M, Katsuta E, Yan L, Satyananda V, Matsuhashi N, Futamura M, Akao Y, Yoshida K, Takabe K (2020) KRAS signaling enriched triple negative breast cancer is associated with favorable tumor immune microenvironment and better survival. Am J Cancer Res 10:897–907

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Oshi M, Newman S, Tokumaru Y, Yan L, Matsuyama R, Endo I, Nagahashi M, Takabe K (2020) Intra-tumoral angiogenesis is associated with inflammation immune reaction and metastatic recurrence in breast cancer. Int J Mol Sci 21:6708

    Article  CAS  PubMed Central  Google Scholar 

  24. Oshi M, Newman S, Tokumaru Y, Yan L, Matsuyama R, Endo I, Takabe K (2020) Inflammation is associated with worse outcome in the whole cohort but with better outcome in triple-negative subtype of breast cancer patients. J Immunol Res 2020:5618786

    Article  PubMed  PubMed Central  Google Scholar 

  25. Gandhi S, Oshi M, Murthy V, Repasky EA, Takabe K (2021) Enhanced thermogenesis in triple-negative breast cancer is associated with pro-tumor immune microenvironment. Cancers 13:2559

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Oshi M, Tokumaru Y, Angarita FA, Lee L, Yan L, Matsuyama R, Endo I, Takabe K (2021) Adipogenesis in triple-negative breast cancer is associated with unfavorable tumor immune microenvironment and with worse survival. Sci Rep 11:12541

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Murthy V, Oshi M, Tokumaru Y, Endo I, Takabe K (2021) Increased apoptosis is associated with robust immune cell infiltration and cytolytic activity in breast cancer. Am J Cancer Res 11:3674–3687

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Oshi M, Takahashi H, Tokumaru Y, Yan L, Rashid OM, Matsuyama R, Endo I, Takabe K (2020) G2M cell cycle pathway score as a prognostic biomarker of metastasis in estrogen receptor (ER)-positive breast cancer. Int J Mol Sci 21:2921

    Article  CAS  PubMed Central  Google Scholar 

  29. Oshi M, Takahashi H, Tokumaru Y, Yan L, Rashid OM, Nagahashi M, Matsuyama R, Endo I, Takabe K (2020) The E2F pathway score as a predictive biomarker of response to neoadjuvant therapy in ER+/HER2- breast cancer. Cells 9:1643

    Article  CAS  PubMed Central  Google Scholar 

  30. Rueda OM, Sammut SJ, Seoane JA, Chin SF, Caswell-Jin JL, Callari M, Batra R, Pereira B, Bruna A, Ali HR, Provenzano E, Liu B, Parisien M, Gillett C, McKinney S, Green AR, Murphy L, Purushotham A, Ellis IO, Pharoah PD, Rueda C, Aparicio S, Caldas C, Curtis C (2019) Dynamics of breast-cancer relapse reveal late-recurring ER-positive genomic subgroups. Nature 567:399–404

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Curtis C, Shah SP, Chin SF, Turashvili G, Rueda OM, Dunning MJ, Speed D, Lynch AG, Samarajiwa S, Yuan Y, Gräf S, Ha G, Haffari G, Bashashati A, Russell R, McKinney S, Langerød A, Green A, Provenzano E, Wishart G, Pinder S, Watson P, Markowetz F, Murphy L, Ellis I, Purushotham A, Børresen-Dale AL, Brenton JD, Tavaré S, Caldas C, Aparicio S (2012) The genomic and transcriptomic architecture of 2,000 breast tumours reveals novel subgroups. Nature 486:346–352

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Brueffer C, Gladchuk S, Winter C, Vallon-Christersson J, Hegardt C, Häkkinen J, George AM, Chen Y, Ehinger A, Larsson C, Loman N, Malmberg M, Rydén L, Borg Å, Saal LH (2020) The mutational landscape of the SCAN-B real-world primary breast cancer transcriptome. EMBO Mol Med 12:e12118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Liu J, Lichtenberg T, Hoadley KA, Poisson LM, Lazar AJ, Cherniack AD, Kovatich AJ, Benz CC, Levine DA, Lee AV, Omberg L, Wolf DM, Shriver CD, Thorsson V, Hu H (2018) An integrated TCGA pan-cancer clinical data resource to drive high-quality survival outcome analytics. Cell 173:400-416.e411

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Chung W, Eum HH, Lee HO, Lee KM, Lee HB, Kim KT, Ryu HS, Kim S, Lee JE, Park YH, Kan Z, Han W, Park WY (2017) Single-cell RNA-seq enables comprehensive tumour and immune cell profiling in primary breast cancer. Nat Commun 8:15081

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Hänzelmann S, Castelo R, Guinney J (2013) GSVA: gene set variation analysis for microarray and RNA-seq data. BMC Bioinformatics 14:7

    Article  PubMed  PubMed Central  Google Scholar 

  36. Narayanan S, Kawaguchi T, Yan L, Peng X, Qi Q, Takabe K (2018) Cytolytic activity score to assess anticancer immunity in colorectal cancer. Ann Surg Oncol 25:2323–2331

    Article  PubMed  PubMed Central  Google Scholar 

  37. Takeshita T, Torigoe T, Yan L, Huang JL, Yamashita H, Takabe K (2020) The impact of immunofunctional phenotyping on the malfunction of the cancer immunity cycle in breast cancer. Cancers 13:110

    Article  PubMed Central  CAS  Google Scholar 

  38. Oshi M, Kawaguchi T, Yan L, Peng X, Qi Q, Tian W, Schulze A, McDonald KA, Narayanan S, Young J, Liu S, Morris LG, Chan TA, Kalinski P, Matsuyama R, Otsuji E, Endo I, Takabe K (2021) Immune cytolytic activity is associated with reduced intra-tumoral genetic heterogeneity and with better clinical outcomes in triple negative breast cancer. Am J Cancer Res 11:3628–3644

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Oshi M, Gandhi S, Huyser MR, Tokumaru Y, Yan L, Yamada A, Matsuyama R, Endo I, Takabe K (2021) MELK expression in breast cancer is associated with infiltration of immune cell and pathological compete response (pCR) after neoadjuvant chemotherapy. Am J Cancer Res 11:4421–4437

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Rooney MS, Shukla SA, Wu CJ, Getz G, Hacohen N (2015) Molecular and genetic properties of tumors associated with local immune cytolytic activity. Cell 160:48–61

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Aran D, Hu Z, Butte AJ (2017) xCell: digitally portraying the tissue cellular heterogeneity landscape. Genome Biol 18:220

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  42. Oshi M, Asaoka M, Tokumaru Y, Angarita FA, Yan L, Matsuyama R, Zsiros E, Ishikawa T, Endo I, Takabe K (2020) Abundance of regulatory T cell (Treg) as a predictive biomarker for neoadjuvant chemotherapy in triple-negative breast cancer. Cancers 12:3038

    Article  CAS  PubMed Central  Google Scholar 

  43. Oshi M, Newman S, Murthy V, Tokumaru Y, Yan L, Matsuyama R, Endo I, Takabe K (2020) ITPKC as a prognostic and predictive biomarker of neoadjuvant chemotherapy for triple negative breast cancer. Cancers 12:2758

    Article  CAS  PubMed Central  Google Scholar 

  44. Oshi M, Tokumaru Y, Patel A, Yan L, Matsuyama R, Endo I, Katz MHG, Takabe K (2020) A novel four-gene score to predict pathologically complete (R0) resection and survival in pancreatic cancer. Cancers 12:3635

    Article  CAS  PubMed Central  Google Scholar 

  45. Thorsson V, Gibbs DL, Brown SD, Wolf D, Bortone DS, Yang THO, Porta-Pardo E, Gao GF, Plaisier CL, Eddy JA et al (2019) The immune landscape of cancer. Immunity 51:411–412

    Article  CAS  PubMed  Google Scholar 

  46. Subramanian A, Tamayo P, Mootha VK, Mukherjee S, Ebert BL, Gillette MA, Paulovich A, Pomeroy SL, Golub TR, Lander ES, Mesirov JP (2005) Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci USA 102:15545–15550

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Satyananda V, Oshi M, Tokumaru Y, Maiti A, Hait N, Matsuyama R, Endo I, Takabe K (2021) Sphingosine 1-phosphate (S1P) produced by sphingosine kinase 1 (SphK1) and exported via ABCC1 is related to hepatocellular carcinoma (HCC) progression. Am J Cancer Res 11:4394–4407

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Katsuta E, Huyser M, Yan L, Takabe K (2021) A prognostic score based on long-term survivor unique transcriptomic signatures predicts patient survival in pancreatic ductal adenocarcinoma. Am J Cancer Res 11:4294–4307

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Oshi M, Gandhi S, Angarita FA, Kim TH, Tokumaru Y, Yan L, Matsuyama R, Endo I, Takabe K (2021) A novel five-gene score to predict complete pathological response to neoadjuvant chemotherapy in ER-positive/HER2-negative breast cancer. Am J Cancer Res 11:3611–3627

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Oshi M, Newman S, Tokumaru Y, Yan L, Matsuyama R, Kalinski P, Endo I, Takabe K (2020) Plasmacytoid dendritic cell (pDC) infiltration correlate with tumor infiltrating lymphocytes, cancer immunity, and better survival in triple negative breast cancer (TNBC) more strongly than conventional dendritic cell (cDC). Cancers 12:3342

    Article  CAS  PubMed Central  Google Scholar 

  51. Oshi M, Asaoka M, Tokumaru Y, Yan L, Matsuyama R, Ishikawa T, Endo I, Takabe K (2020) CD8 T cell score as a prognostic biomarker for triple negative breast cancer. Int J Mol Sci 21:6968

    Article  CAS  PubMed Central  Google Scholar 

  52. Valko M, Rhodes CJ, Moncol J, Izakovic M, Mazur M (2006) Free radicals, metals and antioxidants in oxidative stress-induced cancer. Chem Biol Interact 160:1–40

    Article  CAS  PubMed  Google Scholar 

  53. Harman D (2006) Free radical theory of aging: an update: increasing the functional life span. Ann NY Acad Sci 1067:10–21

    Article  CAS  PubMed  Google Scholar 

  54. Preston DL, Mattsson A, Holmberg E, Shore R, Hildreth NG, Boice JD Jr (2002) Radiation effects on breast cancer risk: a pooled analysis of eight cohorts. Radiat Res 158:220–235

    Article  CAS  PubMed  Google Scholar 

  55. Yue W, Santen RJ, Wang JP, Li Y, Verderame MF, Bocchinfuso WP, Korach KS, Devanesan P, Todorovic R, Rogan EG, Cavalieri EL (2003) Genotoxic metabolites of estradiol in breast: potential mechanism of estradiol induced carcinogenesis. J Steroid Biochem Mol Biol 86:477–486

    Article  CAS  PubMed  Google Scholar 

  56. Higinbotham KG, Rice JM, Diwan BA, Kasprzak KS, Reed CD, Perantoni AO (1992) GGT to GTT transversions in codon 12 of the K-ras oncogene in rat renal sarcomas induced with nickel subsulfide or nickel subsulfide/iron are consistent with oxidative damage to DNA. Can Res 52:4747–4751

    CAS  Google Scholar 

  57. Brash DE, Rudolph JA, Simon JA, Lin A, McKenna GJ, Baden HP, Halperin AJ, Pontén J (1991) A role for sunlight in skin cancer: UV-induced p53 mutations in squamous cell carcinoma. Proc Natl Acad Sci USA 88:10124–10128

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Poulsen HE, Prieme H, Loft S (1998) Role of oxidative DNA damage in cancer initiation and promotion. Eur J Cancer Prev 7:9–16

    CAS  PubMed  Google Scholar 

  59. Weinberg SE, Sena LA, Chandel NS (2015) Mitochondria in the regulation of innate and adaptive immunity. Immunity 42:406–417

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Kirtonia A, Sethi G, Garg M (2020) The multifaceted role of reactive oxygen species in tumorigenesis. Cell Mol Life Sci 77:4459–4483

    Article  CAS  PubMed  Google Scholar 

  61. Mougiakakos D, Johansson CC, Kiessling R (2009) Naturally occurring regulatory T cells show reduced sensitivity toward oxidative stress-induced cell death. Blood 113:3542–3545

    Article  CAS  PubMed  Google Scholar 

  62. Zhang Y, Choksi S, Chen K, Pobezinskaya Y, Linnoila I, Liu ZG (2013) ROS play a critical role in the differentiation of alternatively activated macrophages and the occurrence of tumor-associated macrophages. Cell Res 23:898–914

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Giovanelli P, Sandoval TA, Cubillos-Ruiz JR (2019) Dendritic cell metabolism and function in tumors. Trends Immunol 40:699–718

    Article  CAS  PubMed  Google Scholar 

  64. Chougnet CA, Thacker RI, Shehata HM, Hennies CM, Lehn MA, Lages CS, Janssen EM (2015) Loss of phagocytic and antigen cross-presenting capacity in aging dendritic cells is associated with mitochondrial dysfunction. J Immunol 195:2624–2632

    Article  CAS  PubMed  Google Scholar 

  65. Veglia F, Tyurin VA, Mohammadyani D, Blasi M, Duperret EK, Donthireddy L, Hashimoto A, Kapralov A, Amoscato A, Angelini R, Patel S, Alicea-Torres K, Weiner D, Murphy ME, Klein-Seetharaman J, Celis E, Kagan VE, Gabrilovich DI (2017) Lipid bodies containing oxidatively truncated lipids block antigen cross-presentation by dendritic cells in cancer. Nat Commun 8:2122

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  66. Kotsafti A, Scarpa M, Castagliuolo I, Scarpa M (2020) Reactive oxygen species and antitumor immunity-from surveillance to evasion. Cancers 12:1748

    Article  CAS  PubMed Central  Google Scholar 

  67. Guo S, Burcus NI, Scott M, Jing Y, Semenov I (2021) The role of reactive oxygen species in the immunity induced by nano-pulse stimulation. Sci Rep 11:23745

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Loi S, Michiels S, Salgado R, Sirtaine N, Jose V, Fumagalli D, Kellokumpu-Lehtinen PL, Bono P, Kataja V, Desmedt C, Piccart MJ, Loibl S, Denkert C, Smyth MJ, Joensuu H, Sotiriou C (2014) Tumor infiltrating lymphocytes are prognostic in triple negative breast cancer and predictive for trastuzumab benefit in early breast cancer: results from the FinHER trial. Ann Oncol 25:1544–1550

    Article  CAS  PubMed  Google Scholar 

  69. Wang Q, Xiang Q, Yu L, Hu T, Chen Y, Wang J, Nie X, Cheng J (2019) Changes in tumor-infiltrating lymphocytes and vascular normalization in breast cancer patients after neoadjuvant chemotherapy and their correlations with DFS. Front Oncol 9:1545

    Article  PubMed  Google Scholar 

  70. Nagahashi M, Hait NC, Maceyka M, Avni D, Takabe K, Milstien S, Spiegel S (2014) Sphingosine-1-phosphate in chronic intestinal inflammation and cancer. Adv Biol Regul 54:112–120

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This research was supported by National Institutes of Health, USA grant number R37CA248018, R01CA250412, R01CA251545, R01EB029596, as well as US Department of Defense BCRP grant number W81XWH-19–1-0674 and W81XWH-19–1-0111 to K.T. National Cancer Institute, cancer center support grant P30CA016056 supports Roswell Park Comprehensive Cancer Center. Research reported in this publication was supported by the National Center for Advancing Translational Sciences of the National Institutes of Health under award numbers KL2TR001413 and UL1TR001412. The content is solely the responsibility of the authors and does not necessarily represent the official views of the NIH.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization was performed by AY, IE, KT, MO, and RM. Methodology was performed by KT, MO, and YT. Formal Analysis was performed by MO. The first draft of the manuscript was written by MO, and all authors commented on previous versions of the manuscript. Supervision and project administration were performed by KT. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Kazuaki Takabe.

Ethics declarations

Conflict of interests

The authors have no relevant financial or non-financial interests to disclose.

Ethical approval

Institutional review board (IRB) approval at Roswell Park Comprehensive Cancer Center (Buffalo, New York, United States of America) was waived as publicly available deidentified databases were used.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 101 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Oshi, M., Gandhi, S., Yan, L. et al. Abundance of reactive oxygen species (ROS) is associated with tumor aggressiveness, immune response, and worse survival in breast cancer. Breast Cancer Res Treat 194, 231–241 (2022). https://doi.org/10.1007/s10549-022-06633-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10549-022-06633-0

Keywords

Navigation