Skip to main content

Advertisement

Log in

The early-stage triple-negative breast cancer landscape derives a novel prognostic signature and therapeutic target

  • Preclinical study
  • Published:
Breast Cancer Research and Treatment Aims and scope Submit manuscript

Abstract

Purpose

Triple-negative breast cancer (TNBC) is a highly heterogeneous disease. Patients with early-stage TNBCs have distinct likelihood of distant recurrence. This study aimed to develop a prognostic signature of early-stage TNBC patients to improve risk stratification.

Methods

Using RNA-sequencing data, we analyzed 189 pathologically confirmed pT1-2N0M0 TNBC patients and identified 21 mRNAs that were highly expressed in tumor and related to relapse-free survival. All-subset regression program was used for constructing a 7-mRNA signature in the training set (n = 159); the accuracy and prognostic value were then validated using an independent validation set (n = 158).

Results

Here, we profiled the transcriptome data from 189 early-stage TNBC patients along with 50 paired normal tissues. Early-stage TNBCs mainly consisted of basal-like immune-suppressed subtype and had higher homologous recombination deficiency scores. We developed a prognostic signature including seven mRNAs (ACAN, KRT5, TMEM101, LCA5, RPP40, LAGE3, CDKL2). In both the training (n = 159) and validation set (n = 158), this signature could identify patients with relatively high recurrence risks and served as an independent prognostic factor. Time-dependent receiver operating curve showed that the signature had better prognostic value than traditional clinicopathological features in both sets. Functionally, we showed that TMEM101 promoted cell proliferation and migration in vitro, which represented a potential therapeutic target.

Conclusions

Our 7-mRNA signature could accurately predict recurrence risks of early-stage TNBCs. This model may facilitate personalized therapy decision-making for early-stage TNBCs individuals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

The datasets analyzed during the current study are available in the Gene Expression Omnibus (GSE76250, HTA2.0) and Sequence Read Archive (SRP157974, RNA-seq).

Abbreviations

AIC:

Akaike information criterion

AUC:

Area under curve

BLIS:

Basal-like and immune-suppressed

ER:

Estrogen receptor

HER2:

Human epidermal growth factor receptor 2

HR:

Hormone receptor

HRD:

Homologous recombination deficiency

IM:

Immunomodulatory

LAR:

Luminal androgen receptor

LASSO:

Least absolute shrinkage and selection operator

MES:

Mesenchymal-like

RFS:

Relapse-free survival

ROC:

Receiver operating characteristic

PR:

Progestogen receptor

RT-qPCR:

Real-time quantitative-polymerase chain reaction

siRNA:

Small interfering RNAs

TNBC:

Triple-negative breast cancer

References

  1. Foulkes WD, Smith IE, Reis-Filho JS (2010) Triple-negative breast cancer. N Engl J Med 363:1938–1948

    Article  CAS  PubMed  Google Scholar 

  2. Fan L, Strasser-Weippl K, Li J-J, St Louis J, Finkelstein DM, Yu K-D et al (2014) Breast cancer in China. Lancet Oncol 15:e279-289

    Article  PubMed  Google Scholar 

  3. Zeng H, Ran X, An L, Zheng R, Zhang S, Ji JS et al (2021) Disparities in stage at diagnosis for five common cancers in China: a multicentre, hospital-based, observational study. Lancet Public Health 6:e877–e887

    Article  PubMed  Google Scholar 

  4. Bao J, Donovan C, Amersi F, Zhang X, Giuliano AE, Chung A (2019) Outcomes in patients with small node-negative invasive breast cancer. Breast J 25:638–643

    Article  CAS  PubMed  Google Scholar 

  5. Parise CA, Caggiano V (2017) Risk of mortality of node-negative, ER/PR/HER2 breast cancer subtypes in T1, T2, and T3 tumors. Breast Cancer Res Treat 165:743–750

    Article  PubMed  Google Scholar 

  6. Amar S, McCullough AE, Tan W, Geiger XJ, Boughey JC, McNeil RB et al (2010) Prognosis and outcome of small (<=1 cm), node-negative breast cancer on the basis of hormonal and HER-2 status. Oncologist 15:1043–1049

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. de Nonneville A, Gonçalves A, Zemmour C, Cohen M, Classe JM, Reyal F et al (2017) Adjuvant chemotherapy in pT1ab node-negative triple-negative breast carcinomas: results of a national multi-institutional retrospective study. Eur J Cancer 84:34–43

    Article  PubMed  Google Scholar 

  8. Liu NQ, Stingl C, Look MP, Smid M, Braakman RBH, De Marchi T et al (2014) Comparative proteome analysis revealing an 11-protein signature for aggressive triple-negative breast cancer. J Natl Cancer Inst 106:djt376

    PubMed  PubMed Central  Google Scholar 

  9. Liu Y-R, Jiang Y-Z, Xu X-E, Yu K-D, Jin X, Hu X et al (2016) Comprehensive transcriptome analysis identifies novel molecular subtypes and subtype-specific RNAs of triple-negative breast cancer. Breast Cancer Res 18:33

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Wang Y, Klijn JGM, Zhang Y, Sieuwerts AM, Look MP, Yang F et al (2005) Gene-expression profiles to predict distant metastasis of lymph-node-negative primary breast cancer. Lancet 365:9

    Article  CAS  Google Scholar 

  11. Simon R, Altman DG (1994) Statistical aspects of prognostic factor studies in oncology. Br J Cancer 69:979–985

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Xiao Y, Ma D, Zhao S, Suo C, Shi J, Xue M-Z et al (2019) Multi-omics profiling reveals distinct microenvironment characterization and suggests immune escape mechanisms of triple-negative breast cancer. Clin Cancer Res 25:5002–5014

    Article  CAS  PubMed  Google Scholar 

  13. Hammond MEH, Hayes DF, Wolff AC, Mangu PB, Temin S (2010) American Society of Clinical Oncology/College of American Pathologists guideline recommendations for immunohistochemical testing of estrogen and progesterone receptors in breast cancer. J Oncol Pract 6:195–197

    Article  PubMed  PubMed Central  Google Scholar 

  14. Amin MB, Edge SB (2017) AJCC cancer staging manual. Springer, Cham

    Book  Google Scholar 

  15. Tibshirani R (1997) The lasso method for variable selection in the Cox model. Stat Med 16:385–395

    Article  CAS  PubMed  Google Scholar 

  16. Calcagno V, de Mazancourt C (2010) glmulti: an R package for easy automated model selection with (generalized) linear models. J Stat Softw. https://doi.org/10.18637/jss.v034.i12

    Article  Google Scholar 

  17. Youden WJ (1950) Index for rating diagnostic tests. Cancer 3:32–35

    Article  CAS  PubMed  Google Scholar 

  18. Subramanian A, Tamayo P, Mootha VK, Mukherjee S, Ebert BL, Gillette MA et al (2005) Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci USA 102:15545–15550

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Jin X, Xu X-E, Jiang Y-Z, Liu Y-R, Sun W, Guo Y-J et al (2019) The endogenous retrovirus-derived long noncoding RNA TROJAN promotes triple-negative breast cancer progression via ZMYND8 degradation. Sci Adv 5:eaat9820

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Jiang Y-Z, Ma D, Suo C, Shi J, Xue M, Hu X et al (2019) Genomic and transcriptomic landscape of triple-negative breast cancers: subtypes and treatment strategies. Cancer Cell 35:428-440.e5

    Article  CAS  PubMed  Google Scholar 

  21. Timms KM, Abkevich V, Hughes E, Neff C, Reid J, Morris B et al (2014) Association of BRCA1/2 defects with genomic scores predictive of DNA damage repair deficiency among breast cancer subtypes. Breast Cancer Res. https://doi.org/10.1186/s13058-014-0475-x

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Srikureja W, Kyulo NL, Runyon BA, Hu K-Q (2005) MELD score is a better prognostic model than Child-Turcotte-Pugh score or Discriminant Function score in patients with alcoholic hepatitis. J Hepatol 42:700–706

    Article  PubMed  Google Scholar 

  23. Panczykowski DM, Puccio AM, Scruggs BJ, Bauer JS, Hricik AJ, Beers SR et al (2012) Prospective independent validation of IMPACT modeling as a prognostic tool in severe traumatic brain injury. J Neurotrauma 29:47–52

    Article  PubMed  Google Scholar 

  24. Matsuda A, Suzuki Y, Honda G, Muramatsu S, Matsuzaki O, Nagano Y et al (2003) Large-scale identification and characterization of human genes that activate NF-kappaB and MAPK signaling pathways. Oncogene 22:3307–3318

    Article  CAS  PubMed  Google Scholar 

  25. Khan ZA, Labala RK, Yumnamcha T, Devi SD, Mondal G, Sanjita Devi H et al (2018) Artificial light at night (ALAN), an alarm to ovarian physiology: a study of possible chronodisruption on zebrafish (Danio rerio). Sci Total Environ 628–629:1407–1421

    Article  PubMed  CAS  Google Scholar 

  26. Fusella F, Seclì L, Busso E, Krepelova A, Moiso E, Rocca S et al (2017) The IKK/NF-κB signaling pathway requires Morgana to drive breast cancer metastasis. Nat Commun 8:1636

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. Rakha EA, El-Sayed ME, Green AR, Lee AHS, Robertson JF, Ellis IO (2007) Prognostic markers in triple-negative breast cancer. Cancer 109:25–32

    Article  CAS  PubMed  Google Scholar 

  28. Ren Y-X, Hao S, Jin X, Ye F-G, Gong Y, Jiang Y-Z et al (2019) Effects of adjuvant chemotherapy in T1N0M0 triple-negative breast cancer. Breast 43:97–104

    Article  PubMed  Google Scholar 

  29. Foekens JA, Atkins D, Zhang Y, Sweep FCGJ, Harbeck N, Paradiso A et al (2006) Multicenter validation of a gene expression-based prognostic signature in lymph node-negative primary breast cancer. J Clin Oncol 24:1665–1671

    Article  CAS  PubMed  Google Scholar 

  30. Perou CM, Sørlie T, Eisen MB, van de Rijn M, Jeffrey SS, Rees CA et al (2000) Molecular portraits of human breast tumours. Nature 406:747–752

    Article  CAS  PubMed  Google Scholar 

  31. Piccart M, van’t Veer LJ, Poncet C, Lopes Cardozo JMN, Delaloge S, Pierga J-Y et al (2021) 70-gene signature as an aid for treatment decisions in early breast cancer: updated results of the phase 3 randomised MINDACT trial with an exploratory analysis by age. Lancet Oncol 22:476–488

    Article  CAS  PubMed  Google Scholar 

  32. Liu Y-R, Jiang Y-Z, Xu X-E, Hu X, Yu K-D, Shao Z-M (2016) Comprehensive transcriptome profiling reveals multigene signatures in triple-negative breast cancer. Clin Cancer Res 22:1653–1662

    Article  CAS  PubMed  Google Scholar 

  33. Li L, Liu C, Amato RJ, Chang JT, Du G, Li W (2014) CDKL2 promotes epithelial-mesenchymal transition and breast cancer progression. Oncotarget 5:10840–10853

    Article  PubMed  PubMed Central  Google Scholar 

  34. Pineda B, Diaz-Lagares A, Pérez-Fidalgo JA, Burgués O, González-Barrallo I, Crujeiras AB et al (2019) A two-gene epigenetic signature for the prediction of response to neoadjuvant chemotherapy in triple-negative breast cancer patients. Clin Epigenetics 11:33

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Zhao SG, Chen WS, Das R, Chang SL, Tomlins SA, Chou J et al (2019) Clinical and genomic implications of luminal and basal subtypes across carcinomas. Clin Cancer Res 25:2450–2457

    Article  CAS  PubMed  Google Scholar 

  36. Dadhania V, Zhang M, Zhang L, Bondaruk J, Majewski T, Siefker-Radtke A et al (2016) Meta-analysis of the luminal and basal subtypes of bladder cancer and the identification of signature immunohistochemical markers for clinical use. EBioMedicine 12:105–117

    Article  PubMed  PubMed Central  Google Scholar 

  37. Rodriguez-Pinilla SM (2006) Prognostic significance of basal-like phenotype and fascin expression in node-negative invasive breast carcinomas. Clin Cancer Res 12:1533–1539

    Article  CAS  PubMed  Google Scholar 

  38. van de Rijn M, Perou CM, Tibshirani R, Haas P, Kallioniemi O, Kononen J et al (2002) Expression of cytokeratins 17 and 5 identifies a group of breast carcinomas with poor clinical outcome. Am J Pathol 161:1991–1996

    Article  PubMed  PubMed Central  Google Scholar 

  39. Rowlands D, Lensjø KK, Dinh T, Yang S, Andrews MR, Hafting T et al (2018) Aggrecan directs extracellular matrix-mediated neuronal plasticity. J Neurosci 38:10102–10113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Suna G, Wojakowski W, Lynch M, Barallobre-Barreiro J, Yin X, Mayr U et al (2018) Extracellular matrix proteomics reveals interplay of aggrecan and aggrecanases in vascular remodeling of stented coronary arteries. Circulation 137:166–183

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Oskarsson T (2013) Extracellular matrix components in breast cancer progression and metastasis. Breast 22(Suppl 2):S66-72

    Article  PubMed  Google Scholar 

  42. Joensuu H, Kellokumpu-Lehtinen P-L, Huovinen R, Jukkola-Vuorinen A, Tanner M, Kokko R et al (2017) Adjuvant capecitabine in combination with docetaxel, epirubicin, and cyclophosphamide for early breast cancer: the randomized clinical FinXX trial. JAMA Oncol 3:793–800

    Article  PubMed  PubMed Central  Google Scholar 

  43. Masuda N, Lee S-J, Ohtani S, Im Y-H, Lee E-S, Yokota I et al (2017) Adjuvant capecitabine for breast cancer after preoperative chemotherapy. N Engl J Med 376:2147–2159

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the Program of Shanghai Academic/Technology Research Leader (20XD1421100), the Fok Ying-Tong Education Foundation for College Young Teachers (171034), the Shanghai Sailing Program (19YF1409000), the Innovation Team of Ministry of Education (IRT1223), and the Shanghai Key Laboratory of Breast Cancer (12DZ2260100). The funders had no role in the study design, data collection and analysis, or manuscript preparation.

Author information

Authors and Affiliations

Authors

Contributions

Conception and design: Y-SY, Y-XR, C-LL, XJ, X-EX, Y-ZJ, and Z-MS; Development of methodology: Y-SY, Y-XR, X-EX, and Y-ZJ; Acquisition of data: Y-SY, Y-XR, SH, and Y-ZJ; Analysis and interpretation of data: Y-SY, Y-XR, C-LL, XJ, and Y-ZJ; Writing, review, and/or revision of the manuscript: Y-SY, Y-XR, C-LL, SH, XJ, Y-ZJ, and Z-MS; Administrative, technical, or material support: Y-SY, Y-XR, SH, XJ, X-EX, and Y-ZJ; Study supervision: Y-ZJ, Z-MS.

Corresponding authors

Correspondence to Xi Jin, Yi-Zhou Jiang or Zhi-Ming Shao.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Ethical approval

The independent ethics committee/institutional review board of FUSCC (Shanghai Cancer Center Ethics Committee) approved our study.

Consent to participate

Written informed consent from patients in our study was obtained before enrollment.

Consent for publication

All authors read and approved the manuscript as submitted.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 3586 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, YS., Ren, YX., Liu, CL. et al. The early-stage triple-negative breast cancer landscape derives a novel prognostic signature and therapeutic target. Breast Cancer Res Treat 193, 319–330 (2022). https://doi.org/10.1007/s10549-022-06537-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10549-022-06537-z

Keywords

Navigation