Skip to main content

Advertisement

Log in

The progesterone-receptor modulator, ulipristal acetate, drastically lowers breast cell proliferation

  • Clinical trial
  • Published:
Breast Cancer Research and Treatment Aims and scope Submit manuscript

Abstract

Purpose

The proliferation of breast epithelial cells increases during the luteal phase of the menstrual cycle, when they are exposed to progesterone, suggesting that ulipristal acetate, a selective progestin-receptor modulator (SPRM), may reduce breast cell proliferation with potential use in breast cancer chemoprevention.

Methods

Women aged 18–39 were randomized 1:1 to ulipristal 10-mg daily or to a combination oral contraceptive (COC) for 84 days. Participants underwent a breast biopsy and breast MRI at baseline and at end of study treatment. Proliferation of breast TDLU cells was evaluated by Ki67 immunohistochemical stain. We evaluated the breast MRIs for background parenchymal enhancement (BPE). All slides and images were masked for outcome evaluation.

Results

Twenty-eight treatment-compliant participants completed the study; 25 of whom had evaluable Ki67 results at baseline and on-treatment. From baseline to end of treatment, Ki67 % positivity (Ki67%+) decreased a median of 84% in the ulipristal group (N = 13; 2-sided p (2p) = 0.040) versus a median increase of 8% in the COC group (N = 12; 2p = 0.85). Median BPE scores decreased from 3 to 1 in the ulipristal group (p = 0.008) and did not decrease in the COC group.

Conclusion

Ulipristal was associated with a major decrease in Ki67%+ and BPE. Ulipristal would warrant further investigation for breast cancer chemoprevention were it not for concerns about its liver toxicity. Novel SPRMs without liver toxicity could provide a new approach to breast cancer chemoprevention.

Trial registration

NCT02922127, 4 October 2016.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Data availability

The data underlying this article will be shared on reasonable application to the corresponding author.

Abbreviations

BMI:

Body mass index

BPE:

Background parenchymal enhancement

Cl:

Confidence limit

COC:

Combination oral contraceptive

E2:

Estradiol

ERα%+ :

ERα % positivity

FNA:

Fine needle aspirate

IQR:

Interquartile range

Ki67%+ :

Ki67 % positivity

PRA%+ :

PRA % positivity

NICHD:

National Institute of Child Health and Human Development

MRI:

Magnetic resonance imaging

P4:

Progesterone

Rx:

On-treatment

SPRM:

Selective progestin-receptor modulator

TDLU:

Terminal duct lobular unit

References

  1. Owens DK, Davidson KW, Krist AH, Barry MJ, Cabana M et al (2019) Medication use to reduce risk of breast cancer: US preventive services task force recommendation statement. JAMA 322(9):857–867. https://doi.org/10.1001/jama.2019.11885

    Article  PubMed  Google Scholar 

  2. Pike MC, Spicer DV, Dahmoush L, Press MF (1993) Estrogens, progestogens, normal breast cell proliferation, and breast cancer risk. Epidemiol Rev 15(1):17–35. https://doi.org/10.1093/oxfordjournals.epirev.a036102

    Article  CAS  PubMed  Google Scholar 

  3. Bardon S, Vignon F, Montcourrier P, Rochefort H (1987) Steroid receptor-mediated cytotoxicity of an antiestrogen and an antiprogestin in breast cancer cells. Cancer Res 47(5):1441–1448

    CAS  PubMed  Google Scholar 

  4. Benagiano G, Bastianelli C, Farris M (2008) Selective progesterone receptor modulators 3: use in oncology, endocrinology and psychiatry. Expert Opin Pharmacother 9(14):2487–2496. https://doi.org/10.1517/14656566.9.14.2487

    Article  CAS  PubMed  Google Scholar 

  5. Kloosterboer HJ, Deckers GH, Schoonen WG, Hanssen RG, Rose UM, Verbost PM et al (2000) Preclinical experience with two selective progesterone receptor modulators on breast and endometrium. Steroids 65(10–11):733–740. https://doi.org/10.1016/s0039-128x(00)00189-6

    Article  CAS  PubMed  Google Scholar 

  6. Wiehle RD, Christov K, Mehta R (2007) Anti-progestins suppress the growth of established tumors induced by 7,12-dimethylbenz(a)anthracene: comparison between RU486 and a new 21-substituted-19-nor-progestin. Oncol Rep 18(1):167–174

    CAS  PubMed  Google Scholar 

  7. Engman M, Skoog L, Soderqvist G, Gemzell-Danielsson K (2008) The effect of mifepristone on breast cell proliferation in premenopausal women evaluated through fine needle aspiration cytology. Hum Reprod 23(9):2072–2079. https://doi.org/10.1093/humrep/den228

    Article  CAS  PubMed  Google Scholar 

  8. Baird DT, Brown A, Cheng L, Critchley HO, Lin S, Narvekar N, Williams AR (2003) Mifepristone: a novel estrogen-free daily contraceptive pill. Steroids 68(10–13):1099–1105. https://doi.org/10.1016/j.steroids.2003.07.002

    Article  CAS  PubMed  Google Scholar 

  9. Lakha F, Ho PC, Van der Spuy ZM, Dada K, Elton R, Glasier AF et al (2007) A novel estrogen-free oral contraceptive pill for women: multicentre, double-blind, randomized controlled trial of mifepristone and progestogen-only pill (levonorgestrel). Hum Reprod 22(9):2428–2436. https://doi.org/10.1093/humrep/dem177

    Article  CAS  PubMed  Google Scholar 

  10. Attardi BJ, Burgenson J, Hild SA, Reel JR, Blye RP (2002) CDB-4124 and its putative monodemethylated metabolite, CDB-4453, are potent antiprogestins with reduced antiglucocorticoid activity: in vitro comparison to mifepristone and CDB-2914. Mol Cell Endocrinol 188(1–2):111–123. https://doi.org/10.1016/s0303-7207(01)00743-2

    Article  CAS  PubMed  Google Scholar 

  11. Donnez J, Tatarchuk TF, Bouchard P, Puscasiu L, Zakharenko NF, Ivanova T et al (2012) Ulipristal acetate versus placebo for fibroid treatment before surgery. N Engl J Med 366(5):409–420. https://doi.org/10.1056/NEJMoa1103182

    Article  CAS  PubMed  Google Scholar 

  12. Donnez J, Vazquez F, Tomaszewski J, Nouri K, Bouchard P, Fauser BC et al (2014) Long-term treatment of uterine fibroids with ulipristal acetate. Fertil Steril 101(6):1565–1573. https://doi.org/10.1016/j.fertnstert.2014.02.008

    Article  CAS  PubMed  Google Scholar 

  13. Glasier AF, Cameron ST, Fine PM, Logan SJ, Casale W, Van Horn J et al (2010) Ulipristal acetate versus levonorgestrel for emergency contraception: a randomised non-inferiority trial and meta-analysis. Lancet 375(9714):555–562. https://doi.org/10.1016/S0140-6736(10)60101-8

    Article  CAS  PubMed  Google Scholar 

  14. Chabbert-Buffet N, Pintiaux-Kairis A, Bouchard P, Group VAS (2007) Effects of the progesterone receptor modulator VA2914 in a continuous low dose on the hypothalamic-pituitary-ovarian axis and endometrium in normal women: a prospective, randomized, placebo-controlled trial. J Clin Endocrinol Metab 92(9):3582–3589. https://doi.org/10.1210/jc.2006-2816

    Article  CAS  PubMed  Google Scholar 

  15. Esber N, Cherbonnier C, Resche-Rigon M, Hamze A, Alami M, Fagart J et al (2016) Anti-tumoral effects of anti-progestins in a patient-derived breast cancer xenograft model. Horm Cancer 7(2):137–147. https://doi.org/10.1007/s12672-016-0255-4

    Article  CAS  PubMed  Google Scholar 

  16. Wellings SR, Jensen HM, Marcum RG (1975) An atlas of subgross pathology of the human breast with special reference to possible precancerous lesions. J Natl Cancer Inst 55(2):231–273

    CAS  PubMed  Google Scholar 

  17. Olsson H, Jernstrom H, Alm P, Ingvar C, Jonsson P-E, Ryden S (1996) Proliferation of the breast epithelium in relation to menstrual cycle phase, hormone use, and reproductive factors. Breast Cancer Res Treat 40:187–196. https://doi.org/10.1007/BF01806214

    Article  CAS  PubMed  Google Scholar 

  18. Söderqvist G, Isaksson E, von Schoultz B, Carlstrom K, Tani E, Skoog L (1997) Proliferation of breast epithelial cells in healthy women during the menstrual cycle. Am J Obstet Gynecol 176(1):123–128. https://doi.org/10.1016/s0002-9378(97)80024-5

    Article  PubMed  Google Scholar 

  19. Isaksson E, Schoultz Ev, Odlind V, Söderqvist G, Csemiczky G, Carlström K et al (2001) Effects of oral contraceptives on breast epithelial proliferation. Breast Cancer Res Treat 65(2):163–169. https://doi.org/10.1023/a:1006482418082

    Article  CAS  PubMed  Google Scholar 

  20. Collaborative Group on Hormonal Factors in Breast Cancer (1996) Breast cancer and hormonal contraceptives: collaborative reanalysis of individual data on 53 297 women with breast cancer and 100 239 women without breast cancer from 54 epidemiological studies. Lancet 347(9017):1713–1727. https://doi.org/10.1016/s0140-6736(96)90806-5

    Article  Google Scholar 

  21. Westhoff CL, Pike MC (2018) Hormonal contraception and breast cancer. Am J Obstet Gynecol 219(2):169.e1-169.e4. https://doi.org/10.1016/j.ajog.2018.03.032

    Article  CAS  Google Scholar 

  22. Lee SA, Ross RK, Pike MC (2005) An overview of menopausal oestrogen-progestin hormone therapy and breast cancer risk. Br J Cancer 92(11):2049–2058. https://doi.org/10.1038/sj.bjc.6602617

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Hunter DJ, Colditz GA, Hankinson SE, Malspeis S, Spiegelman D, Chen W et al (2010) Oral contraceptive use and breast cancer: a prospective study of young women. Cancer Epidemiol Biomark Prev 19(10):2496–2502. https://doi.org/10.1158/1055-9965.EPI-10-0747

    Article  Google Scholar 

  24. Hovanessian-Larsen L, Taylor D, Hawes D, Spicer DV, Press MF, Wu AH et al (2012) Lowering oral contraceptive norethindrone dose increases estrogen and progesterone receptor levels with no reduction in proliferation of breast epithelium: a randomized trial. Contraception 86(3):238–243. https://doi.org/10.1016/j.contraception.2011.12.015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Sung JS, Corben AD, Brooks JD, Edelweiss M, Keating DM, Lin C et al (2018) Histopathologic characteristics of background parenchymal enhancement (BPE) on breast MRI. Breast Cancer Res Treat 172(2):487–496. https://doi.org/10.1007/s10549-018-4916-6

    Article  PubMed  PubMed Central  Google Scholar 

  26. Mema E, Mango VL, Guo X, Karcich J, Yeh R, Wynn RT et al (2018) Does breast MRI background parenchymal enhancement indicate metabolic activity? Qualitative and 3D quantitative computer imaging analysis. J Magn Reson Imaging 47(3):753–759. https://doi.org/10.1002/jmri.25798

    Article  PubMed  Google Scholar 

  27. King V, Gu Y, Kaplan JB, Brooks JD, Pike MC, Morris EA (2012) Impact of menopausal status on background parenchymal enhancement and fibroglandular tissue on breast MRI. Eur Radiol 22(12):2641–2647. https://doi.org/10.1007/s00330-012-2553-8

    Article  PubMed  Google Scholar 

  28. King V, Kaplan J, Pike MC, Liberman L, David Dershaw D, Lee CH et al (2012) Impact of tamoxifen on amount of fibroglandular tissue, background parenchymal enhancement, and cysts on breast magnetic resonance imaging. Breast J 18(6):527–534. https://doi.org/10.1111/tbj.12002

    Article  CAS  PubMed  Google Scholar 

  29. King V, Goldfarb SB, Brooks JD, Sung JS, Nulsen BF, Jozefara JE et al (2012) Effect of aromatase inhibitors on background parenchymal enhancement and amount of fibroglandular tissue at breast MR imaging. Radiology 264(3):670–678. https://doi.org/10.1148/radiol.12112669

    Article  PubMed  Google Scholar 

  30. Donnez J (2018) Liver injury and ulipristal acetate: an overstated tragedy? Fertil Steril 110(4):593–595. https://doi.org/10.1016/j.fertnstert.2018/.06.044

    Article  PubMed  Google Scholar 

  31. Curtis KM, Tepper NK, Jatlaoui TC, Berry-Bibee E, Horton LG, Zapata LB et al (2016) U.S. medical eligibility criteria for contraceptive use, 2016. MMWR Recomm Rep 65(3):1–103. https://doi.org/10.15585/mmwr.rr6503a1

    Article  PubMed  Google Scholar 

  32. Ha R, Mema E, Guo X, Mango V, Desperito E, Ha J et al (2016) Three-dimensional quantitative validation of breast magnetic resonance imaging background parenchymal enhancement assessments. Curr Probl Diagn Radiol 45(5):297–303. https://doi.org/10.1067/j.cpradiol.2016.02.003

    Article  PubMed  Google Scholar 

  33. Morris EA (2010) Diagnostic breast MR imaging: current status and future directions. Magn Reson Imaging Clin N Am 18(1):57–74. https://doi.org/10.1016/j.mric.2009.09.005

    Article  PubMed  Google Scholar 

  34. Ursin G, Hovanessian-Larsen L, Parisky YR, Pike MC, Wu AH (2005) Greatly increased occurrence of breast cancers in areas of mammographically dense tissue. Breast Cancer Res 7(5):R605–R608. https://doi.org/10.1186/bcr1260

    Article  PubMed  PubMed Central  Google Scholar 

  35. Bankhead P, Loughrey MB, Fernandez JA, Dombrowski Y, McArt DG, Dunne PD et al (2017) QuPath: open source software for digital pathology image analysis. Sci Rep 7(1):16878. https://doi.org/10.1038/s41598-017-17204-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Koo TK, Li MY (2016) A guideline of selecting and reporting intraclass correlation coefficients for reliability research. J Chiropr Med 15(2):155–163. https://doi.org/10.1016/j.jcm.2016.02.012

    Article  PubMed  PubMed Central  Google Scholar 

  37. Praditpan P, Hamouie A, Basaraba CN, Nandakumar R, Cremers S, Davis AR, Westhoff CL (2017) Pharmacokinetics of levonorgestrel and ulipristal acetate emergency contraception in women with normal and obese body mass index. Contraception 95(5):464–469. https://doi.org/10.1016/j.contraception.2017.01.004

    Article  CAS  PubMed  Google Scholar 

  38. Basaraba CN, Westhoff CL, Pike MC, Nandakumar R, Cremers S (2017) Estimating systemic exposure to levonorgestrel from an oral contraceptive. Contraception 95(4):398–404. https://doi.org/10.1016/j.contraception.2016.12.007

    Article  CAS  PubMed  Google Scholar 

  39. Mantel N, Haenszel W (1959) Statistical aspects of the analysis of data from retrospective studies of disease. J Natl Cancer Inst 22(4):719–748

    CAS  PubMed  Google Scholar 

  40. Peto R, Pike MC, Armitage P, Breslow NE, Cox DR, Howard SV et al (1977) Design and analysis of randomized clinical trials requiring prolonged observation of each patient. II. analysis and examples. Br J Cancer 35(1):1–39. https://doi.org/10.1038/bjc.1977.1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Clarke RB, Laidlow IJ, Jones LJ, Howell A, Anderson E (1993) Effect of tamoxifen on Ki67 labelling index in human breast tumours and its relationship to oestrogen and progesterone receptor status. Br J Cancer 67:606–611. https://doi.org/10.1038/bjc.1993.111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Iwata H, Masuda N, Sagara Y, Kinoshita T, Nakamura S, Yanagita Y et al (2013) Analysis of Ki-67 expression with neoadjuvant anastrozole or tamoxifen in patients receiving goserelin for premenopausal breast cancer. Cancer 119:704–713. https://doi.org/10.1002/cncr.27818

    Article  CAS  PubMed  Google Scholar 

  43. Hofseth LJ, Raafat AM, Osuch JR, Pathak DR, Slomski CA, Haslam SZ (1999) Hormone replacement therapy with estrogenor estrogen plus medroxyprogesterone acetate is associated with increased epithelial proliferation in the normal postmenopausal breast. J Clin Endocrinol Metab 84:4559–4565. https://doi.org/10.1210/jcem.84.12.6194

    Article  CAS  PubMed  Google Scholar 

  44. Ekanem E, Talaulikar V (2021) Medical therapy for fibroids: what next for ulipristal acetate? Adv Ther 38(1):137–148. https://doi.org/10.1007/s12325-020-01555-z

    Article  CAS  PubMed  Google Scholar 

  45. Bouchard P, Chabbert-Buffet N, Fauser BC (2011) Selective progesterone receptor modulators in reproductive medicine: pharmacology, clinical efficacy and safety. Fertil Steril 96(5):1175–1189. https://doi.org/10.1016/j.fertnstert.2011.08.021

    Article  CAS  PubMed  Google Scholar 

  46. Small B, Millard CEF, Kisanga EP, Burman A, Anam A, Flannery C et al (2020) The selective progesterone receptor modulator uliprital acetate inhibits the activity of the glucocorticoid receptor. J Clin Endocrinol Metab 105(3):716–734. https://doi.org/10.1210/clinem/dgz139

    Article  Google Scholar 

Download references

Acknowledgements

We wish to express our sincerest gratitude to the women who volunteered to be part of this study. We also wish to express our thanks to Ariel Allen, Jacqueline Dillon, and Molly Morgan for managing the recruitment and day-to-day study conduct, to Hao Yang for anonymizing the MRIs and arranging for the presentation of only one breast from the MRI to RH for analysis. We also wish to express our thanks to Renu Nandakumar of the Biomarkers Core Laboratory at the Irving Institute for Clinical and Translational Research, home to Columbia University Irving Medical Center’s Clinical and Translational Science Award Program hub, for carrying out the ulipristal and levonorgestrel assays.

Funding

This study was supported by a grant from the National Cancer Institute (5RO1 CA200795; P.I. CLW). MCP was supported in part through the National Institutes of Health/National Cancer Institute Support Grant P30 CA008748 to Memorial Sloan Kettering Cancer Center. The study sponsors had no role in the design of the study; the collection, analysis, or interpretation of the data; the writing of the manuscript; or the decision to submit the manuscript for publication.

Author information

Authors and Affiliations

Authors

Contributions

CLW and MCP conceived the study. CLW, MCP, MP, HH, and RH designed the study. CLW, HH, RH, HG, ZW, and MP acquired the data. HG, ZW, and MCP analyzed the data. All authors contributed to data interpretation as well as critical revision and final approval of the manuscript.

Corresponding author

Correspondence to Carolyn L. Westhoff.

Ethics declarations

Conflict of interest

The authors declare no conflicts of interest regarding the publication of this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 18 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Westhoff, C.L., Guo, H., Wang, Z. et al. The progesterone-receptor modulator, ulipristal acetate, drastically lowers breast cell proliferation. Breast Cancer Res Treat 192, 321–329 (2022). https://doi.org/10.1007/s10549-021-06503-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10549-021-06503-1

Keywords

Navigation