Skip to main content

Advertisement

Log in

Neighborhood characteristics and breast tumor methylation: using epigenomics to explore cancer outcome disparities

  • Epidemiology
  • Published:
Breast Cancer Research and Treatment Aims and scope Submit manuscript

Abstract

Background

Social exposures may drive epigenetic alterations that affect racial disparities in breast cancer outcomes. This study examined the association between neighborhood-level factors and DNA methylation in non-Hispanic Black and White women diagnosed with breast cancer.

Methods

Genome-wide DNA methylation was measured using the EPIC array in the tumor tissue of 96 women. Linear regression models were used to examine the association between nine neighborhood-level factors and methylation, regressing β values for each cytosine-phosphate guanine dinucleotide (CpG) site on neighborhood-level factors while adjusting for covariates. Neighborhood data were obtained from the Opportunity Atlas. We used a false discovery rate (FDR) threshold < 0.05, and for CpGs below this threshold, we examined interactions with race. We employed multivariable Cox proportional-hazards models to estimate whether aberrant methylation was associated with all-cause mortality.

Results

26 of the CpG sites were associated with job density or college education (FDR < 0.05). Further exploration of these 26 CpG sites revealed no interactions by race, but a single probe in TMEM204 was associated with all-cause mortality.

Conclusion

We identified novel associations between neighborhood-level factors and the breast tumor DNA methylome. Our data are the first to show that dysregulation in neighborhood associated CpG sites may be associated with all-cause mortality. Neighborhood-level factors may contribute to differential tumor methylation in genes related to tumor progression and metastasis. This contributes to the increasing body of evidence that area-level factors (such as neighborhood characteristics) may play an important role in cancer disparities through modulation of the breast tumor epigenome.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data availability

The datasets generated during and/or analyzed during the current study are not publicly available due to IRB protocol but are available from the corresponding author on reasonable request to study PI (lauren.mccullough@emory.edu).

References

  1. How Common Is Breast Cancer?: Breast Cancer Statistics (2020) https://www.cancer.org/cancer/breast-cancer/about/how-common-is-breast-cancer.html

  2. Gerend MA, Pai M (2008) Social determinants of Black-White disparities in breast cancer mortality: a review. Cancer Epidemiol Biomark Prev 17(11):2913–2923. https://doi.org/10.1158/1055-9965.epi-07-0633

    Article  Google Scholar 

  3. Huo D, Hu H, Rhie SK, Gamazon ER, Cherniack AD, Liu J et al (2017) Comparison of breast cancer molecular features and survival by African and European ancestry in the cancer genome AtlasBreast cancer molecular features and survival by African and European AncestryBreast cancer molecular features and survival by African and European ancestry. JAMA Oncol 3(12):1654–1662. https://doi.org/10.1001/jamaoncol.2017.0595

    Article  PubMed  PubMed Central  Google Scholar 

  4. Lam LL, Emberly E, Fraser HB, Neumann SM, Chen E, Miller GE, Kobor MS (2012) Factors underlying variable DNA methylation in a human community cohort. Proc Natl Acad Sci USA 109(Supplement_2):17253–17260. https://doi.org/10.1073/pnas.1121249109

    Article  PubMed  PubMed Central  Google Scholar 

  5. Lam LL, Emberly E, Fraser HB, Neumann SM, Chen E, Miller GE, Kobor MS (2012) Factors underlying variable DNA methylation in a human community cohort. Proc Natl Acad Sci USA 109(Supplement_2):17253–17260. https://doi.org/10.1073/pnas.1121249109

    Article  PubMed  PubMed Central  Google Scholar 

  6. Mcdade TW, Ryan CP, Jones MJ, Hoke MK, Borja J, Miller GE et al (2019) Genome-wide analysis of DNA methylation in relation to socioeconomic status during development and early adulthood. Am J Phys Anthropol 169(1):3–11. https://doi.org/10.1002/ajpa.23800

    Article  PubMed  Google Scholar 

  7. Needham BL, Smith JA, Zhao W, Wang X, Mukherjee B, Kardia SLR et al (2015) Life course socioeconomic status and DNA methylation in genes related to stress reactivity and inflammation: the multi-ethnic study of atherosclerosis. Epigenetics 10(10):958–969. https://doi.org/10.1080/15592294.2015.1085139

    Article  PubMed  PubMed Central  Google Scholar 

  8. Bush NR, Edgar RD, Park M, Macisaac JL, Mcewen LM, Adler NE et al (2018) The biological embedding of early-life socioeconomic status and family adversity in childrens genome-wide DNA methylation. Epigenomics 10(11):1445–1461. https://doi.org/10.2217/epi-2018-0042

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Coker ES, Gunier R, Huen K, Holland N, Eskenazi B (2018) DNA methylation and socioeconomic status in a Mexican-American birth cohort. Clin Epigenet. https://doi.org/10.1186/s13148-018-0494-z

    Article  Google Scholar 

  10. Fiorito G, Polidoro S, Dugué P-A, Kivimaki M, Ponzi E, Matullo G et al (2017) Social adversity and epigenetic aging: a multi-cohort study on socioeconomic differences in peripheral blood DNA methylation. Sci Rep. https://doi.org/10.1038/s41598-017-16391-5

    Article  PubMed  PubMed Central  Google Scholar 

  11. Stringhini S, Polidoro S, Sacerdote C, Kelly RS, Veldhoven KV, Agnoli C et al (2015) Life-course socioeconomic status and DNA methylation of genes regulating inflammation. Int J Epidemiol 44(4):1320–1330. https://doi.org/10.1093/ije/dyv060

    Article  PubMed  Google Scholar 

  12. Pan Y, Wang X, Treiber F, Harshfield G, Su S (2019) Differential DNA methylation between African Americans and European Americans: the role of childhood socioeconomic status and relations to health disparity. FASEB J 33(S1):593–515

    Google Scholar 

  13. Smith JA, Zhao W, Wang X, Ratliff SM, Mukherjee B, Kardia SLR et al (2017) Neighborhood characteristics influence DNA methylation of genes involved in stress response and inflammation: the Multi-Ethnic Study of Atherosclerosis. Epigenetics 12(8):662–673. https://doi.org/10.1080/15592294.2017.1341026

    Article  PubMed  PubMed Central  Google Scholar 

  14. Kulis M, Esteller M (2010) DNA methylation and cancer. Adv Genet 70:27–56. https://doi.org/10.1016/B978-0-12-380866-0.60002-2

    Article  PubMed  Google Scholar 

  15. Herman JG, Baylin SB (2003) Gene silencing in cancer in association with promoter hypermethylation. N Engl J Med 349(21):2042–54. https://doi.org/10.1056/NEJMra023075

    Article  CAS  PubMed  Google Scholar 

  16. Do WL, Conneely K, Gabram-Mendola S et al (2020) Obesity-associated methylation in breast tumors: a possible link to disparate outcomes? Breast Cancer Res Treat 181:135–144. https://doi.org/10.1007/s10549-020-05605-6s

    Article  CAS  PubMed  Google Scholar 

  17. He W, Sofie Lindström L, Hall P, Czene K (2017) Cause-specific mortality in women with breast cancer in situ. Int J Cancer 140(11):2414–2421. https://doi.org/10.1002/ijc.30413

    Article  CAS  PubMed  Google Scholar 

  18. Chetty R, Friedman J, Hendren N, Jones M, Porter S (2018) The opportunity atlas: mapping the childhood roots of social mobility. Harvard University Press, Cambridge. https://doi.org/10.3386/W25147

    Book  Google Scholar 

  19. Bock C (2012) Analysing and interpreting DNA methylation data. Nat Rev Genet 13(10):705–19. https://doi.org/10.1038/nrg3273

    Article  CAS  PubMed  Google Scholar 

  20. Zhou W, Laird PW, Shen H (2017) Comprehensive characterization, annotation and innovative use of Infinium DNA methylation BeadChip probes. Nucleic Acids Res 45(4):e22. https://doi.org/10.1093/nar/gkw967

    Article  CAS  PubMed  Google Scholar 

  21. Draheim KM, Chen H-B, Tao Q, Moore N, Roche M, Lyle S (2010) ARRDC3 suppresses breast cancer progression by negatively regulating integrin β4. Oncogene 29(36):5032–5047. https://doi.org/10.1038/onc.2010.250

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Howards PP, Schisterman EF, Poole C, Kaufman JS, Weinberg CR (2012) “Toward a clearer definition of confounding” revisited with directed acyclic graphs. Am J Epidemiol 176(6):506–511. https://doi.org/10.1093/aje/kws127

    Article  PubMed  PubMed Central  Google Scholar 

  23. Giurgescu C, Nowak AL, Gillespie S, Nolan TS, Anderson CM, Ford JL et al (2019) Neighborhood environment and DNA methylation: implications for cardiovascular disease risk. J Urban Health 96(S1):23–34. https://doi.org/10.1007/s11524-018-00341-1

    Article  PubMed  PubMed Central  Google Scholar 

  24. Lei M-K, Beach SR, Simons RL, Philibert RA (2015) Neighborhood crime and depressive symptoms among African American women: genetic moderation and epigenetic mediation of effects. Soc Sci Med 146:120–128. https://doi.org/10.1016/j.socscimed.2015.10.035

    Article  PubMed  PubMed Central  Google Scholar 

  25. Lei M-K, Simons RL, Beach SRH, Philibert RA (2017) Neighborhood disadvantage and biological aging: using marginal structural models to assess the link between neighborhood census variables and epigenetic aging. J Gerontol. https://doi.org/10.1093/geronb/gbx015

    Article  Google Scholar 

  26. Swartz JR, Hariri AR, Williamson DE (2016) An epigenetic mechanism links socioeconomic status to changes in depression-related brain function in high-risk adolescents. Mol Psychiatry 22(2):209–214. https://doi.org/10.1038/mp.2016.82

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Baccarelli A, Wright RO, Bollati V, Tarantini L, Litonjua AA, Suh HH, Zanobetti A, Sparrow D, Vokonas PS, Schwartz J (2009) Rapid DNA methylation changes after exposure to traffic particles. Am J Respir Crit Care Med 179(7):572–578. https://doi.org/10.1164/rccm.200807-1097OC

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Jennings V, Bamkole O (2019) The relationship between social cohesion and urban green space: an avenue for health promotion. Int J Environ Res Public Health 16(3):452. https://doi.org/10.3390/ijerph16030452

    Article  PubMed Central  Google Scholar 

  29. van Dongen J, Bonder MJ, Dekkers KF et al (2018) DNA methylation signatures of educational attainment. npj Sci Learn 3:7. https://doi.org/10.1038/s41539-018-0020-2

    Article  PubMed  PubMed Central  Google Scholar 

  30. Buckles K, Hagemann A, Malamud O, Morrill M, Wozniak A (2016) The effect of college education on mortality. J Health Econ 50:99–114. https://doi.org/10.1016/j.jhealeco.2016.08.002

    Article  PubMed  Google Scholar 

  31. Krueger PM, Tran MK, Hummer RA, Chang VW (2015) Mortality attributable to low levels of education in the United States. PLoS ONE 10(7):e0131809. https://doi.org/10.1371/journal.pone.0131809

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Bakusic J, Schaufeli W, Claes S, Godderis L (2017) Stress, burnout and depression: a systematic review on DNA methylation mechanisms. J Psychosom Res 92:34–44. https://doi.org/10.1016/j.jpsychores.2016.11.005

    Article  PubMed  Google Scholar 

  33. Hout M (2012) Social and economic returns to college education in the United States. Ann Rev Sociol 38(1):379–400. https://doi.org/10.1146/annurev.soc.012809.102503

    Article  Google Scholar 

  34. Bollati V, Baccarelli A, Sartori S, Tarantini L, Motta V, Rota F, Costa G (2010) Epigenetic effects of shiftwork on blood DNA methylation. Chronobiol Int 27(5):1093–1104. https://doi.org/10.3109/07420528.2010.490065

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Wright RO, Schwartz J, Wright RJ, Bollati V, Tarantini L, Park SK, Hu H, Sparrow D, Vokonas P, Baccarelli A (2010) Biomarkers of lead exposure and DNA methylation within retrotransposons. Environ Health Perspect 118(6):790–795. https://doi.org/10.1289/ehp.0901429

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Kile ML, Fang S, Baccarelli AA, Tarantini L, Cavallari J, Christiani DC (2013) A panel study of occupational exposure to fine particulate matter and changes in DNA methylation over a single workday and years worked in boilermaker welders. Environ Health 12(1):47. https://doi.org/10.1186/1476-069X-12-47

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Ganji S, Miotto E, Callegari E, Sayehmiri K, Fereidooni F, Yazdanbod M, Rastgar-Jazii F, Negrini M (2010) Associations of risk factors obesity and occupational airborne exposures with CDKN2A/p16 aberrant DNA methylation in esophageal cancer patients. Dis Esophagus 23(7):597–602. https://doi.org/10.1111/j.1442-2050.2010.01059.x

    Article  Google Scholar 

  38. Ali AHK, Kondo K, Namura T, Senba Y, Takizawa H, Nakagawa Y, Toba H, Kenzaki K, Sakiyama S, Tangoku A (2011) Aberrant DNA methylation of some tumor suppressor genes in lung cancers from workers with chromate exposure. Mol Carcinog 50(2):89–99. https://doi.org/10.1002/mc.20697

    Article  CAS  PubMed  Google Scholar 

  39. Wilhelm-Benartzi CS, Christensen BC, Koestler DC, Andres Houseman E, Schned AR, Karagas MR, Kelsey KT, Marsit CJ (2011) Association of secondhand smoke exposures with DNA methylation in bladder carcinomas. Cancer Causes Control 22(8):1205–1213. https://doi.org/10.1007/s10552-011-9788-6

    Article  PubMed  PubMed Central  Google Scholar 

  40. Arakaki AKS, Pan WA, Lin H, Trejo J (2018) The α-arrestin ARRDC3 suppresses breast carcinoma invasion by regulating G protein-coupled receptor lysosomal sorting and signaling. J Biol Chem 293(9):3350–3362. https://doi.org/10.1074/jbc.RA117.001516

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Hou J, Wu J, Dombkowski A et al (2012) Genomic amplification and a role in drug-resistance for the KDM5A histone demethylase in breast cancer. Am J Transl Res 4(3):247–256

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Roa-de La Cruz L, Martínez-Morales P, Morán-Cruz I et al (2018) Expression analysis of ST3GAL4 transcripts in cervical cancer cells. Mol Med Rep 18(1):617–621. https://doi.org/10.3892/mmr.2018.8938

    Article  CAS  PubMed  Google Scholar 

  43. Ji D, Zhong X, Jiang X et al (2018) The role of long non-coding RNA AFAP1-AS1 in human malignant tumors. Pathol Res Pract 214(10):1524–1531. https://doi.org/10.1016/j.prp.2018.08.014

    Article  CAS  PubMed  Google Scholar 

  44. Raymond JR Jr, Appleton KM, Pierce JY, Peterson YK (2014) Suppression of GNAI2 message in ovarian cancer. J Ovarian Res 7:6. https://doi.org/10.1186/1757-2215-7-6

    Article  PubMed  PubMed Central  Google Scholar 

  45. Cassandri M, Smirnov A, Novelli F et al (2017) Zinc-finger proteins in health and disease. Cell Death Discov 3:17071. https://doi.org/10.1038/cddiscovery.2017.71

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Yeo S-Y, Ha SY, Yu EJ, Lee K-W, Kim JH, Kim S-H (2014) ZNF282 (Zinc finger protein 282), a novel E2F1 co-activator, promotes esophageal squamous cell carcinoma. Oncotarget. https://doi.org/10.18632/oncotarget.2630

    Article  PubMed  PubMed Central  Google Scholar 

  47. Yu EJ, Kim S-H, Kim MJ, Seo W-Y, Song K-A, Kang M-S et al (2012) SUMOylation of ZFP282 potentiates its positive effect on estrogen signaling in breast tumorigenesis. Oncogene 32(35):4160–4168. https://doi.org/10.1038/onc.2012.420

    Article  CAS  PubMed  Google Scholar 

  48. Chen L, Zeng T, Pan X, Zhang YH, Huang T, Cai YD (2019) Identifying methylation pattern and genes associated with breast cancer subtypes. Int J Mol Sci 20(17):4269. https://doi.org/10.3390/ijms20174269

    Article  CAS  PubMed Central  Google Scholar 

  49. Baretta Z, Olopade OI, Huo D (2015) Heterogeneity in hormone-receptor status and survival outcomes among women with synchronous and metachronous bilateral breast cancers. Breast 24(2):131–136. https://doi.org/10.1016/j.breast.2014.12.001

    Article  PubMed  Google Scholar 

  50. Smith ZD, Meissner A (2013) DNA methylation: roles in mammalian development. Nat Rev Genet 14(3):204–220. https://doi.org/10.1038/nrg3354

    Article  CAS  PubMed  Google Scholar 

  51. Kennedy EM, Goehring GN, Nichols MH, Robins C, Mehta D, Klengel T, Eskin E, Smith AK, Conneely KN (2018) An integrated -omics analysis of the epigenetic landscape of gene expression in human blood cells. BMC Genomics 19(1):476. https://doi.org/10.1186/s12864-018-4842-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Chu QD, Burton G, Glass J, Smith MH, Li BD (2010) Impact of race and ethnicity on outcomes for estrogen receptor-negative breast cancers: experience of an academic center with a charity hospital. J Am Coll Surg 210(5):585–594. https://doi.org/10.1016/j.jamcollsurg.2010.01.025

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This work was funded by Developmental Funds from the Winship Cancer Institute of Emory University through the Brenda Nease Breast Cancer Fund and the Glenn Family Breast Center (PI: LEM, Grant No. 00067187), as well as the AVON Foundation for Women (PI: SGM, Grant No. 01-2016-087). The research was supported, in part, by Emory's Integrated Genomics Core shared resource, a core supported by the Winship Cancer Institute of Emory University. JG was supported in part by the Applebaum-Peabody Scholarship through the Rollins School of Public Health at Emory University. Fresh tumor specimens from breast cancer patients were obtained from the Breast Satellite Tissue Bank, Winship Cancer Institute, Emory University, Atlanta, GA, USA

Author information

Authors and Affiliations

Authors

Contributions

LEM conceived the research and designed the study. LEM, SGM, and KG secured funding for the research. OD, MT, and LEM, curated clinical data for the research. UK and LEM obtained and processed specimens. LEM, WD, JG, and KC drafted the analytic plan and supervised all the work. JG and WD performed the statistical analysis. LEM, JG, WD, and JMK aided in data interpretation. LEM, JG, WD, and JMK drafted the manuscript. All authors contributed to the development of the manuscript.

Corresponding author

Correspondence to Lauren E. McCullough.

Ethics declarations

Conflict of interest

No conflict of interests to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Disclosures

SGM Board Member TurningPoint Breast Cancer Rehabilitation, a 501c3 organization in Atlanta.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 27 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gohar, J., Do, W.L., Miller-Kleinhenz, J. et al. Neighborhood characteristics and breast tumor methylation: using epigenomics to explore cancer outcome disparities. Breast Cancer Res Treat 191, 653–663 (2022). https://doi.org/10.1007/s10549-021-06430-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10549-021-06430-1

Keywords

Navigation