Skip to main content

Advertisement

Log in

Prognostic role of immune infiltrates in breast ductal carcinoma in situ

  • Review
  • Published:
Breast Cancer Research and Treatment Aims and scope Submit manuscript

Abstract

Purpose

Ductal carcinoma in situ (DCIS) of the breast is often regarded as a non-obligate precursor to invasive breast carcinoma but current diagnostic tools are unable to accurately predict the invasive potential of DCIS. Infiltration of immune cells into the tumour and its microenvironment is often an early event at the site of tumourigenesis. These immune infiltrates may be potential predictive and/or prognostic biomarkers for DCIS. This review aims to discuss recent findings pertaining to the potential prognostic significance of immune infiltrates as well as their evaluation in DCIS.

Methods

A literature search on PubMed was conducted up to 28th January 2019. Search terms used were “DCIS”, “ductal carcinoma in situ”, “immune”, “immunology”, “TIL”, “TIL assessment”, and “tumour-infiltrating lymphocyte”. Search filters for “Most Recent” and “English” were applied. Information from published papers related to the research topic were synthesised and summarised for this review.

Results

Studies have revealed that immune infiltrates play a role in the biology and microenvironment of DCIS, as well as treatment response. There is currently no consensus on the evaluation of TILs in DCIS for clinical application.

Conclusions

This review highlights the recent findings on the potential influence and prognostic value of immunological processes on DCIS progression, as well as the evaluation of TILs in DCIS. Further characterisation of the immune milieu of DCIS is recommended to better understand the immune response in DCIS progression and recurrence.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Lee RJ, Vallow LA, McLaughlin SA, Tzou KS, Hines SL, Peterson JL (2012) Ductal carcinoma in situ of the breast. Int J Surg Oncol 2012:12. https://doi.org/10.1155/2012/123549

    Article  Google Scholar 

  2. Koh VC, Lim JC, Thike AA, Cheok PY, Thu MM, Tan VK, Tan BK, Ong KW, Ho GH, Tan WJ, Tan Y, Salahuddin AS, Busmanis I, Chong AP, Iqbal J, Thilagaratnam S, Wong JS, Tan PH (2015) Characteristics and behaviour of screen-detected ductal carcinoma in situ of the breast: comparison with symptomatic patients. Breast Cancer Res Treat 152(2):293–304. https://doi.org/10.1007/s10549-015-3472-6

    Article  PubMed  Google Scholar 

  3. Cowell CF, Weigelt B, Sakr RA, Ng CKY, Hicks J, King TA, Reis-Filho JS (2013) Progression from ductal carcinoma in situ to invasive breast cancer: revisited. Mol Oncol 7(5):859–869. https://doi.org/10.1016/j.molonc.2013.07.005

    Article  PubMed  PubMed Central  Google Scholar 

  4. Wellings SR, Jensen HM (1973) On the origin and progression of ductal carcinoma in the human breast. J Natl Cancer Inst 50(5):1111–1118

    Article  CAS  PubMed  Google Scholar 

  5. Doebar SC, van den Broek EC, Koppert LB, Jager A, Baaijens MHA, Obdeijn I-MAM, van Deurzen CHM (2016) Extent of ductal carcinoma in situ according to breast cancer subtypes: a population-based cohort study. Breast Cancer Res Treat 158(1):179–187. https://doi.org/10.1007/s10549-016-3862-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Schnitt SJ (2009) The transition from ductal carcinoma in situto invasive breast cancer: the other side of the coin. Breast Cancer Res 11(1):101. https://doi.org/10.1186/bcr2228

    Article  PubMed  PubMed Central  Google Scholar 

  7. Damonte P, Hodgson JG, Chen JQ, Young LJ, Cardiff RD, Borowsky AD (2008) Mammary carcinoma behavior is programmed in the precancer stem cell. Breast Cancer Res 10(3):R50. https://doi.org/10.1186/bcr2104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Knudsen ES, Ertel A, Davicioni E, Kline J, Schwartz GF, Witkiewicz AK (2012) Progression of ductal carcinoma in situ to invasive breast cancer is associated with gene expression programs of EMT and myoepithelia. Breast Cancer Res Treat 133(3):1009–1024. https://doi.org/10.1007/s10549-011-1894-3

    Article  CAS  PubMed  Google Scholar 

  9. Gao Y, Niu Y, Wang X, Wei L, Lu S (2009) Genetic changes at specific stages of breast cancer progression detected by comparative genomic hybridization. J Mol Med 87(2):145–152. https://doi.org/10.1007/s00109-008-0408-1

    Article  CAS  PubMed  Google Scholar 

  10. Wang Y, Klijn JG, Zhang Y, Sieuwerts AM, Look MP, Yang F, Talantov D, Timmermans M, Meijer-van Gelder ME, Yu J, Jatkoe T, Berns EM, Atkins D, Foekens JA (2005) Gene-expression profiles to predict distant metastasis of lymph-node-negative primary breast cancer. Lancet (London, England) 365(9460):671–679. https://doi.org/10.1016/s0140-6736(05)17947-1

    Article  CAS  Google Scholar 

  11. Carraro DM, Elias EV, Andrade VP (2014) Ductal carcinoma in situ of the breast: morphological and molecular features implicated in progression. Biosci Rep. https://doi.org/10.1042/bsr20130077

    Article  PubMed  PubMed Central  Google Scholar 

  12. Waldman FM, DeVries S, Chew KL, Moore IIDH, Kerlikowske K, Ljung B-M (2000) Chromosomal alterations in ductal carcinomas in situ and their in situ recurrences. J Natl Cancer Inst 92(4):313–320. https://doi.org/10.1093/jnci/92.4.313

    Article  CAS  PubMed  Google Scholar 

  13. Fleischer T, Frigessi A, Johnson KC, Edvardsen H, Touleimat N, Klajic J, Riis ML, Haakensen VD, Wärnberg F, Naume B, Helland Å, Børresen-Dale A-L, Tost J, Christensen BC, Kristensen VNJGB (2014) Genome-wide DNA methylation profiles in progression to in situ and invasive carcinoma of the breast with impact on gene transcription and prognosis. Genome Biol 15(8):435. https://doi.org/10.1186/s13059-014-0435-x

    Article  PubMed  PubMed Central  Google Scholar 

  14. Pang J-MB, Dobrovic A, Fox SB (2013) DNA methylation in ductal carcinoma in situ of the breast. Breast Cancer Res 15(3):206. https://doi.org/10.1186/bcr3420

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Ma X-J, Salunga R, Tuggle JT, Gaudet J, Enright E, McQuary P, Payette T, Pistone M, Stecker K, Zhang BM, Zhou Y-X, Varnholt H, Smith B, Gadd M, Chatfield E, Kessler J, Baer TM, Erlander MG, Sgroi DC (2003) Gene expression profiles of human breast cancer progression. Proc Natl Acad Sci USA 100(10):5974–5979. https://doi.org/10.1073/pnas.0931261100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Abba MC, Gong T, Lu Y, Lee J, Zhong Y, Lacunza E, Butti M, Takata Y, Gaddis S, Shen J, Estecio MR, Sahin AA, Aldaz CM (2015) A molecular portrait of high-grade ductal carcinoma in situ. Can Res 75(18):3980–3990. https://doi.org/10.1158/0008-5472.CAN-15-0506

    Article  CAS  Google Scholar 

  17. Pang J-MB, Savas P, Fellowes AP, Mir Arnau G, Kader T, Vedururu R, Hewitt C, Takano EA, Byrne DJ, Choong DYH, Millar EKA, Lee CS, O’Toole SA, Lakhani SR, Cummings MC, Mann GB, Campbell IG, Dobrovic A, Loi S, Gorringe KL, Fox SB (2017) Breast ductal carcinoma in situ carry mutational driver events representative of invasive breast cancer. Mod Pathol 30(7):952. https://doi.org/10.1038/modpathol.2017.21

    Article  CAS  PubMed  Google Scholar 

  18. Ottesen GL, Christensen IJ, Larsen JK, Larsen J, Christiansen J, Baldetorp B, Linden T, Hansen B, Andersen JA (1997) DNA ploidy analysis in breast carcinoma. Comparison of unfixed and fixed tissue analyzed by image and flow cytometry. Anal Quant Cytol Histol 19(5):413–422

    CAS  PubMed  Google Scholar 

  19. Giardina C, Serio G, Lepore G, Lettini T, Dalena AM, Pennella A, D’Eredita G, Valente T, Ricco R (2003) Pure ductal carcinoma in situ and in situ component of ductal invasive carcinoma of the breast. A preliminary morphometric study. J Exp Clin Cancer Res 22(2):279–288

    CAS  PubMed  Google Scholar 

  20. Page DL, Dupont WD, Rogers LW, Landenberger M (1982) Intraductal carcinoma of the breast: follow-up after biopsy only. Cancer 49(4):751–758. https://doi.org/10.1002/1097-0142(19820215)49:4%3c751:AID-CNCR20%3e3.0.CO;2-Y

    Article  CAS  PubMed  Google Scholar 

  21. Sanders ME, Schuyler PA, Dupont WD, Page DL (2005) The natural history of low-grade ductal carcinoma in situ of the breast in women treated by biopsy only revealed over 30 years of long-term follow-up. Cancer 103(12):2481–2484. https://doi.org/10.1002/cncr.21069

    Article  PubMed  Google Scholar 

  22. Page DL, Dupont WD, Rogers LW, Jensen RA, Schuyler PA (1995) Continued local recurrence of carcinoma 15–25 years after a diagnosis of low grade ductal carcinoma in situ of the breast treated only by biopsy. Cancer 76(7):1197–1200. https://doi.org/10.1002/1097-0142(19951001)76:7%3c1197:AID-CNCR22%3e3.0.CO;2-0

    Article  CAS  PubMed  Google Scholar 

  23. Fisher ER, Gregorio RM, Fisher B, Redmond C, Vellios F, Sommers SC (1975) The pathology of invasive breast cancer. A syllabus derived from findings of the National Surgical Adjuvant Breast Project (protocol no. 4). Cancer 36(1):1–85

    Article  CAS  PubMed  Google Scholar 

  24. Abdel-Fatah TM, Powe DG, Hodi Z, Lee AH, Reis-Filho JS, Ellis IO (2007) High frequency of coexistence of columnar cell lesions, lobular neoplasia, and low grade ductal carcinoma in situ with invasive tubular carcinoma and invasive lobular carcinoma. Am J Surg Pathol 31(3):417–426. https://doi.org/10.1097/01.pas.0000213368.41251.b9

    Article  PubMed  Google Scholar 

  25. Bryan BB, Schnitt SJ, Collins LC (2006) Ductal carcinoma in situ with basal-like phenotype: a possible precursor to invasive basal-like breast cancer. Mod Pathol 19(5):617–621. https://doi.org/10.1038/modpathol.3800570

    Article  CAS  PubMed  Google Scholar 

  26. Clark SE, Warwick J, Carpenter R, Bowen RL, Duffy SW, Jones JL (2011) Molecular subtyping of DCIS: heterogeneity of breast cancer reflected in pre-invasive disease. Br J Cancer 104(1):120–127. https://doi.org/10.1038/sj.bjc.6606021

    Article  CAS  PubMed  Google Scholar 

  27. Livasy CA, Perou CM, Karaca G, Cowan DW, Maia D, Jackson S, Tse CK, Nyante S, Millikan RC (2007) Identification of a basal-like subtype of breast ductal carcinoma in situ. Hum Pathol 38(2):197–204. https://doi.org/10.1016/j.humpath.2006.08.017

    Article  CAS  PubMed  Google Scholar 

  28. Muggerud AA, Hallett M, Johnsen H, Kleivi K, Zhou W, Tahmasebpoor S, Amini RM, Botling J, Borresen-Dale AL, Sorlie T, Warnberg F (2010) Molecular diversity in ductal carcinoma in situ (DCIS) and early invasive breast cancer. Mol Oncol 4(4):357–368. https://doi.org/10.1016/j.molonc.2010.06.007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Lund E, Nakamura A, Thalabard JC (2018) No overdiagnosis in the Norwegian Breast Cancer Screening Program estimated by combining record linkage and questionnaire information in the Norwegian Women and Cancer study. Eur J Cancer 89:102–112. https://doi.org/10.1016/j.ejca.2017.11.003

    Article  PubMed  Google Scholar 

  30. Siziopikou KP (2013) Ductal carcinoma in situ of the breast: current concepts and future directions. Arch Pathol Lab Med 137(4):462–466. https://doi.org/10.5858/arpa.2012-0078-RA

    Article  CAS  PubMed  Google Scholar 

  31. Virnig BA, Tuttle TM, Shamliyan T, Kane RL (2010) Ductal carcinoma in situ of the breast: a systematic review of incidence, treatment, and outcomes. J Natl Cancer Inst 102(3):170–178. https://doi.org/10.1093/jnci/djp482

    Article  PubMed  Google Scholar 

  32. Whiteside T (2013) Immune responses to cancer: are they potential biomarkers of prognosis? Front Oncol. https://doi.org/10.3389/fonc.2013.00107

    Article  PubMed  PubMed Central  Google Scholar 

  33. Gil Del Alcazar CR, Huh SJ, Ekram MB, Trinh A, Liu LL, Beca F, Zi X, Kwak M, Bergholtz H, Su Y, Ding L, Russnes HG, Richardson AL, Babski K, Min Hui Kim E, McDonnell CH 3rd, Wagner J, Rowberry R, Freeman GJ, Dillon D, Sorlie T, Coussens LM, Garber JE, Fan R, Bobolis K, Allred DC, Jeong J, Park SY, Michor F, Polyak K (2017) Immune escape in breast cancer during in situ to invasive carcinoma transition. Cancer Discov 7(10):1098–1115. https://doi.org/10.1158/2159-8290.Cd-17-0222

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Mantovani A, Allavena P, Sica A, Balkwill F (2008) Cancer-related inflammation. Nature 454(7203):436. https://doi.org/10.1038/nature07205

    Article  CAS  PubMed  Google Scholar 

  35. Thompson ED, Zahurak M, Murphy A, Cornish T, Cuka N, Abdelfatah E, Yang S, Duncan M, Ahuja N, Taube JM, Anders RA, Kelly RJ (2017) Patterns of PD-L1 expression and CD8 T cell infiltration in gastric adenocarcinomas and associated immune stroma. Gut 66(5):794–801. https://doi.org/10.1136/gutjnl-2015-310839

    Article  CAS  PubMed  Google Scholar 

  36. Luen S, Virassamy B, Savas P, Salgado R, Loi S (2016) The genomic landscape of breast cancer and its interaction with host immunity. Breast (Edinburgh, Scotland) 29:241–250. https://doi.org/10.1016/j.breast.2016.07.015

    Article  Google Scholar 

  37. Hanahan D, Coussens Lisa M (2012) Accessories to the crime: functions of cells recruited to the tumor microenvironment. Cancer Cell 21(3):309–322. https://doi.org/10.1016/j.ccr.2012.02.022

    Article  CAS  PubMed  Google Scholar 

  38. Coussens LM, Zitvogel L, Palucka AK (2013) Neutralizing tumor-promoting chronic inflammation: a magic bullet? Science 339(6117):286–291. https://doi.org/10.1126/science.1232227

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Kroemer G, Senovilla L, Galluzzi L, Andre F, Zitvogel L (2015) Natural and therapy-induced immunosurveillance in breast cancer. Nat Med 21(10):1128–1138. https://doi.org/10.1038/nm.3944

    Article  CAS  PubMed  Google Scholar 

  40. Lim E, Wu D, Pal B, Bouras T, Asselin-Labat ML, Vaillant F, Yagita H, Lindeman GJ, Smyth GK, Visvader JE (2010) Transcriptome analyses of mouse and human mammary cell subpopulations reveal multiple conserved genes and pathways. Breast Cancer Res 12(2):R21. https://doi.org/10.1186/bcr2560

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Hendry S, Salgado R, Gevaert T, Russell PA, John T, Thapa B, Christie M, van de Vijver K, Estrada MV, Gonzalez-Ericsson PI, Sanders M, Solomon B, Solinas C, Van den Eynden G, Allory Y, Preusser M, Hainfellner J, Pruneri G, Vingiani A, Demaria S, Symmans F, Nuciforo P, Comerma L, Thompson EA, Lakhani S, Kim SR, Schnitt S, Colpaert C, Sotiriou C, Scherer SJ, Ignatiadis M, Badve S, Pierce RH, Viale G, Sirtaine N, Penault-Llorca F, Sugie T, Fineberg S, Paik S, Srinivasan A, Richardson A, Wang Y, Chmielik E, Brock J, Johnson DB, Balko J, Wienert S, Bossuyt V, Michiels S, Ternes N, Burchardi N, Luen SJ, Savas P, Klauschen F, Watson PH, Nelson BH, Criscitiello C, O’Toole S, Larsimont D, de Wind R, Curigliano G, Andre F, Lacroix-Triki M, van de Vijver M, Rojo F, Floris G, Bedri S, Sparano J, Rimm D, Nielsen T, Kos Z, Hewitt S, Singh B, Farshid G, Loibl S, Allison KH, Tung N, Adams S, Willard-Gallo K, Horlings HM, Gandhi L, Moreira A, Hirsch F, Dieci MV, Urbanowicz M, Brcic I, Korski K, Gaire F, Koeppen H, Lo A, Giltnane J, Rebelatto MC, Steele KE, Zha J, Emancipator K, Juco JW, Denkert C, Reis-Filho J, Loi S, Fox SB (2017) Assessing tumor-infiltrating lymphocytes in solid tumors: a practical review for pathologists and proposal for a standardized method from the International Immunooncology Biomarkers Working Group: Part 1: Assessing the host immune response, TILs in invasive breast carcinoma and ductal carcinoma in situ, metastatic tumor deposits and areas for further research. Adv Anat Pathol 24(5):235–251. https://doi.org/10.1097/pap.0000000000000162

    Article  PubMed  PubMed Central  Google Scholar 

  42. Lee AH, Happerfield LC, Bobrow LG, Millis RR (1997) Angiogenesis and inflammation in ductal carcinoma in situ of the breast. J Pathol 181(2):200–206. https://doi.org/10.1002/(sici)1096-9896(199702)181:2%3c200:Aid-path726%3e3.0.Co;2-k

    Article  CAS  PubMed  Google Scholar 

  43. Thompson E, Taube JM, Elwood H, Sharma R, Meeker A, Warzecha HN, Argani P, Cimino-Mathews A, Emens LA (2016) The immune microenvironment of breast ductal carcinoma in situ. Mod Pathol 29(3):249–258. https://doi.org/10.1038/modpathol.2015.158

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Campbell MJ, Baehner F, O’Meara T, Ojukwu E, Han B, Mukhtar R, Tandon V, Endicott M, Zhu Z, Wong J, Krings G, Au A, Gray JW, Esserman L (2017) Characterizing the immune microenvironment in high-risk ductal carcinoma in situ of the breast. Breast Cancer Res Treat 161(1):17–28. https://doi.org/10.1007/s10549-016-4036-0

    Article  CAS  PubMed  Google Scholar 

  45. Beguinot M, Dauplat MM, Kwiatkowski F, Lebouedec G, Tixier L, Pomel C, Penault-Llorca F, Radosevic-Robin N (2018) Analysis of tumour-infiltrating lymphocytes reveals two new biologically different subgroups of breast ductal carcinoma in situ. BMC Cancer 18(1):129. https://doi.org/10.1186/s12885-018-4013-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Wasserman JK, Parra-Herran C (2015) Regressive change in high-grade ductal carcinoma in situ of the breast: histopathologic spectrum and biologic importance. Am J Clin Pathol 144(3):503–510. https://doi.org/10.1309/ajcpw4eadz9bnxxm

    Article  CAS  PubMed  Google Scholar 

  47. Morita M, Yamaguchi R, Tanaka M, Tse GM, Yamaguchi M, Kanomata N, Naito Y, Akiba J, Hattori S, Minami S, Eguchi S, Yano H (2016) CD8(+) tumor-infiltrating lymphocytes contribute to spontaneous “healing” in HER2-positive ductal carcinoma in situ. Cancer Med 5(7):1607–1618. https://doi.org/10.1002/cam4.715

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Toss MS, Miligy I, Al-Kawaz A, Alsleem M, Khout H, Rida PC, Aneja R, Green AR, Ellis IO, Rakha EA (2018) Prognostic significance of tumor-infiltrating lymphocytes in ductal carcinoma in situ of the breast. Mod Pathol. https://doi.org/10.1038/s41379-018-0040-8

    Article  PubMed  Google Scholar 

  49. Pruneri G, Lazzeroni M, Bagnardi V, Tiburzio GB, Rotmensz N, DeCensi A, Guerrieri-Gonzaga A, Vingiani A, Curigliano G, Zurrida S, Bassi F, Salgado R, Van den Eynden G, Loi S, Denkert C, Bonanni B, Viale G (2017) The prevalence and clinical relevance of tumor-infiltrating lymphocytes (TILs) in ductal carcinoma in situ of the breast. Ann Oncol 28(2):321–328. https://doi.org/10.1093/annonc/mdw623

    Article  CAS  PubMed  Google Scholar 

  50. Man YG, Stojadinovic A, Mason J, Avital I, Bilchik A, Bruecher B, Protic M, Nissan A, Izadjoo M, Zhang X, Jewett A (2013) Tumor-infiltrating immune cells promoting tumor invasion and metastasis: existing theories. J Cancer 4(1):84–95. https://doi.org/10.7150/jca.5482

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Man YG, Tai L, Barner R, Vang R, Saenger JS, Shekitka KM, Bratthauer GL, Wheeler DT, Liang CY, Vinh TN, Strauss BL (2003) Cell clusters overlying focally disrupted mammary myoepithelial cell layers and adjacent cells within the same duct display different immunohistochemical and genetic features: implications for tumor progression and invasion. Breast Cancer Res 5(6):R231–R241. https://doi.org/10.1186/bcr653

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Jiang B, Mason J, Jewett A, Liu ML, Chen W, Qian J, Ding Y, Ding S, Ni M, Zhang X, Man YG (2013) Tumor-infiltrating immune cells: triggers for tumor capsule disruption and tumor progression? Int J Med Sci 10(5):475–497. https://doi.org/10.7150/ijms.5798

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Stanton SE, Adams S, Disis ML (2016) Variation in the incidence and magnitude of tumor-infiltrating lymphocytes in breast cancer subtypes: a systematic review. JAMA oncology 2(10):1354–1360. https://doi.org/10.1001/jamaoncol.2016.1061

    Article  PubMed  Google Scholar 

  54. Hendry S, Pang JB, Byrne DJ, Lakhani SR, Cummings MC, Campbell IG, Mann GB, Gorringe KL, Fox SB (2017) Relationship of the breast ductal carcinoma in situ immune microenvironment with clinicopathological and genetic features. Clin Cancer Res 23(17):5210–5217. https://doi.org/10.1158/1078-0432.Ccr-17-0743

    Article  CAS  PubMed  Google Scholar 

  55. Loi S, Michiels S, Salgado R, Sirtaine N, Jose V, Fumagalli D, Kellokumpu-Lehtinen PL, Bono P, Kataja V, Desmedt C, Piccart MJ, Loibl S, Denkert C, Smyth MJ, Joensuu H, Sotiriou C (2014) Tumor infiltrating lymphocytes are prognostic in triple negative breast cancer and predictive for trastuzumab benefit in early breast cancer: results from the FinHER trial. Ann Oncol 25(8):1544–1550. https://doi.org/10.1093/annonc/mdu112

    Article  CAS  PubMed  Google Scholar 

  56. Hussein MR, Hassan HI (2006) Analysis of the mononuclear inflammatory cell infiltrate in the normal breast, benign proliferative breast disease, in situ and infiltrating ductal breast carcinomas: preliminary observations. J Clin Pathol 59(9):972–977. https://doi.org/10.1136/jcp.2005.031252

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Lal A, Chan L, Devries S, Chin K, Scott GK, Benz CC, Chen YY, Waldman FM, Hwang ES (2013) FOXP3-positive regulatory T lymphocytes and epithelial FOXP3 expression in synchronous normal, ductal carcinoma in situ, and invasive cancer of the breast. Breast Cancer Res Treat 139(2):381–390. https://doi.org/10.1007/s10549-013-2556-4

    Article  CAS  PubMed  Google Scholar 

  58. Ben-Hur H, Cohen O, Schneider D, Gurevich P, Halperin R, Bala U, Mozes M, Zusman I (2002) The role of lymphocytes and macrophages in human breast tumorigenesis: an immunohistochemical and morphometric study. Anticancer Res 22(2b):1231–1238

    PubMed  Google Scholar 

  59. Morita M, Yamaguchi R, Tanaka M, Tse GM, Yamaguchi M, Otsuka H, Kanomata N, Minami S, Eguchi S, Yano H (2016) Two progressive pathways of microinvasive carcinoma: low-grade luminal pathway and high-grade HER2 pathway based on high tumour-infiltrating lymphocytes. J Clin Pathol 69(10):890–898. https://doi.org/10.1136/jclinpath-2015-203506

    Article  CAS  PubMed  Google Scholar 

  60. Loi S, Sirtaine N, Piette F, Salgado R, Viale G, Van Eenoo F, Rouas G, Francis P, Crown JP, Hitre E, de Azambuja E, Quinaux E, Di Leo A, Michiels S, Piccart MJ, Sotiriou C (2013) Prognostic and predictive value of tumor-infiltrating lymphocytes in a phase III randomized adjuvant breast cancer trial in node-positive breast cancer comparing the addition of docetaxel to doxorubicin with doxorubicin-based chemotherapy: bIG 02-98. J Clin Oncol 31(7):860–867. https://doi.org/10.1200/jco.2011.41.0902

    Article  CAS  PubMed  Google Scholar 

  61. Svensson S, Abrahamsson A, Rodriguez GV, Olsson AK, Jensen L, Cao Y, Dabrosin C (2015) CCL2 and CCL5 are novel therapeutic targets for estrogen-dependent breast cancer. Clin Cancer Res 21(16):3794–3805. https://doi.org/10.1158/1078-0432.Ccr-15-0204

    Article  CAS  PubMed  Google Scholar 

  62. Haricharan S, Bainbridge MN, Scheet P, Brown PH (2014) Somatic mutation load of estrogen receptor-positive breast tumors predicts overall survival: an analysis of genome sequence data. Breast Cancer Res Treat 146(1):211–220. https://doi.org/10.1007/s10549-014-2991-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Davoli T, Uno H, Wooten EC, Elledge SJ (2017) Tumor aneuploidy correlates with markers of immune evasion and with reduced response to immunotherapy. Science. https://doi.org/10.1126/science.aaf8399

    Article  PubMed  PubMed Central  Google Scholar 

  64. Knopfelmacher A, Fox J, Lo Y, Shapiro N, Fineberg S (2015) Correlation of histopathologic features of ductal carcinoma in situ of the breast with the oncotype DX DCIS score. Mod Pathol 28(9):1167–1173. https://doi.org/10.1038/modpathol.2015.79

    Article  CAS  PubMed  Google Scholar 

  65. Sheu BC, Kuo WH, Chen RJ, Huang SC, Chang KJ, Chow SN (2008) Clinical significance of tumor-infiltrating lymphocytes in neoplastic progression and lymph node metastasis of human breast cancer. Breast (Edinburgh, Scotland) 17(6):604–610. https://doi.org/10.1016/j.breast.2008.06.001

    Article  Google Scholar 

  66. Bilik R, Mor C, Hazaz B, Moroz C (1989) Characterization of T-lymphocyte subpopulations infiltrating primary breast cancer. Cancer Immunol Immunother 28(2):143–147

    Article  CAS  PubMed  Google Scholar 

  67. Müller MR, Grünebach F, Nencioni A, Brossart P (2003) Transfection of dendritic cells with RNA induces CD4- and CD8-mediated T cell immunity against breast carcinomas and reveals the immunodominance of presented T cell epitopes. J Immunol 170(12):5892–5896. https://doi.org/10.4049/jimmunol.170.12.5892

    Article  PubMed  Google Scholar 

  68. Semeraro M, Adam J, Stoll G, Louvet E, Chaba K, Poirier-Colame V, Sauvat A, Senovilla L, Vacchelli E, Bloy N, Humeau J, Buque A, Kepp O, Zitvogel L, Andre F, Mathieu MC, Delaloge S, Kroemer G (2016) The ratio of CD8(+)/FOXP3 T lymphocytes infiltrating breast tissues predicts the relapse of ductal carcinoma in situ. Oncoimmunology 5(10):e1218106. https://doi.org/10.1080/2162402x.2016.1218106

    Article  PubMed  PubMed Central  Google Scholar 

  69. Senovilla L, Vitale I, Martins I, Tailler M, Pailleret C, Michaud M, Galluzzi L, Adjemian S, Kepp O, Niso-Santano M, Shen S, Marino G, Criollo A, Boileve A, Job B, Ladoire S, Ghiringhelli F, Sistigu A, Yamazaki T, Rello-Varona S, Locher C, Poirier-Colame V, Talbot M, Valent A, Berardinelli F, Antoccia A, Ciccosanti F, Fimia GM, Piacentini M, Fueyo A, Messina NL, Li M, Chan CJ, Sigl V, Pourcher G, Ruckenstuhl C, Carmona-Gutierrez D, Lazar V, Penninger JM, Madeo F, Lopez-Otin C, Smyth MJ, Zitvogel L, Castedo M, Kroemer G (2012) An immunosurveillance mechanism controls cancer cell ploidy. Science 337(6102):1678–1684. https://doi.org/10.1126/science.1224922

    Article  CAS  PubMed  Google Scholar 

  70. Hiraoka N, Onozato K, Kosuge T, Hirohashi S (2006) Prevalence of FOXP3 + regulatory T cells increases during the progression of pancreatic ductal adenocarcinoma and its premalignant lesions. Clin Cancer Res 12(18):5423–5434. https://doi.org/10.1158/1078-0432.Ccr-06-0369

    Article  CAS  PubMed  Google Scholar 

  71. Curiel TJ (2007) Tregs and rethinking cancer immunotherapy. J Clin Investig 117(5):1167–1174. https://doi.org/10.1172/JCI31202

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Gobert M, Treilleux I, Bendriss-Vermare N, Bachelot T, Goddard-Leon S, Arfi V, Biota C, Doffin AC, Durand I, Olive D, Perez S, Pasqual N, Faure C, Ray-Coquard I, Puisieux A, Caux C, Blay JY, Menetrier-Caux C (2009) Regulatory T cells recruited through CCL22/CCR72 are selectively activated in lymphoid infiltrates surrounding primary breast tumors and lead to an adverse clinical outcome. Can Res 69(5):2000–2009. https://doi.org/10.1158/0008-5472.Can-08-2360

    Article  CAS  Google Scholar 

  73. Bettelli E, Carrier Y, Gao W, Korn T, Strom TB, Oukka M, Weiner HL, Kuchroo VK (2006) Reciprocal developmental pathways for the generation of pathogenic effector TH17 and regulatory T cells. Nature 441(7090):235. https://doi.org/10.1038/nature04753

    Article  CAS  PubMed  Google Scholar 

  74. Curiel TJ, Coukos G, Zou L, Alvarez X, Cheng P, Mottram P, Evdemon-Hogan M, Conejo-Garcia JR, Zhang L, Burow M, Zhu Y, Wei S, Kryczek I, Daniel B, Gordon A, Myers L, Lackner A, Disis ML, Knutson KL, Chen L, Zou W (2004) Specific recruitment of regulatory T cells in ovarian carcinoma fosters immune privilege and predicts reduced survival. Nat Med 10(9):942–949. https://doi.org/10.1038/nm1093

    Article  CAS  PubMed  Google Scholar 

  75. Gupta S, Joshi K, Wig JD, Arora SK (2007) Intratumoral FOXP3 expression in infiltrating breast carcinoma: its association with clinicopathologic parameters and angiogenesis. Acta Oncol 46(6):792–797. https://doi.org/10.1080/02841860701233443

    Article  CAS  PubMed  Google Scholar 

  76. Bates GJ, Fox SB, Han C, Leek RD, Garcia JF, Harris AL, Banham AH (2006) Quantification of regulatory T cells enables the identification of high-risk breast cancer patients and those at risk of late relapse. J Clin Oncol 24(34):5373–5380. https://doi.org/10.1200/jco.2006.05.9584

    Article  PubMed  Google Scholar 

  77. Silina K, Rulle U, Kalnina Z, Line A (2014) Manipulation of tumour-infiltrating B cells and tertiary lymphoid structures: a novel anti-cancer treatment avenue? Cancer Immunol Immunother 63(7):643–662. https://doi.org/10.1007/s00262-014-1544-9

    Article  CAS  PubMed  Google Scholar 

  78. Yuen GJ, Demissie E, Pillai S (2016) B lymphocytes and cancer: a love-hate relationship. Trends in Cancer 2(12):747–757. https://doi.org/10.1016/j.trecan.2016.10.010

    Article  PubMed  PubMed Central  Google Scholar 

  79. Reuschenbach M, von Knebel Doeberitz M, Wentzensen N (2009) A systematic review of humoral immune responses against tumor antigens. Cancer Immunol Immunother 58(10):1535–1544. https://doi.org/10.1007/s00262-009-0733-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Sarvaria A, Madrigal JA, Saudemont A (2017) B cell regulation in cancer and anti-tumor immunity. Cell Mol Immunol 14(8):662–674. https://doi.org/10.1038/cmi.2017.35

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Watt V, Ronchese F, Ritchie D (2007) Resting B cells suppress tumor immunity via an MHC class-II dependent mechanism. J Immunother 30(3):323–332. https://doi.org/10.1097/CJI.0b013e31802bd9c8

    Article  CAS  PubMed  Google Scholar 

  82. Cimino-Mathews A, Ye X, Meeker A, Argani P, Emens LA (2013) Metastatic triple-negative breast cancers at first relapse have fewer tumor-infiltrating lymphocytes than their matched primary breast tumors: a pilot study. Hum Pathol 44(10):2055–2063. https://doi.org/10.1016/j.humpath.2013.03.010

    Article  PubMed  PubMed Central  Google Scholar 

  83. Miligy I, Mohan P, Gaber A, Aleskandarany MA, Nolan CC, Diez-Rodriguez M, Mukherjee A, Chapman C, Ellis IO, Green AR, Rakha EA (2017) Prognostic significance of tumour infiltrating B lymphocytes in breast ductal carcinoma in situ. Histopathology 71(2):258–268. https://doi.org/10.1111/his.13217

    Article  PubMed  Google Scholar 

  84. Shen M, Wang J, Ren X (2018) New insights into tumor-infiltrating B lymphocytes in breast cancer: clinical impacts and regulatory mechanisms. Front Immunol. https://doi.org/10.3389/fimmu.2018.00470

    Article  PubMed  PubMed Central  Google Scholar 

  85. Urdiales-Viedma M, Nogales-Fernandez F, Martos-Padilla S, Sanchez-Cantalejo E (1986) Breast tumors: immunoglobulins in axillary lymph nodes. Tumori J 72(6):575–579

    Article  CAS  Google Scholar 

  86. DiLillo DJ, Hamaguchi Y, Ueda Y, Yang K, Uchida J, Haas KM, Kelsoe G, Tedder TF (2008) Maintenance of long-lived plasma cells and serological memory despite mature and memory B cell depletion during CD20 immunotherapy in mice. J Immunol 180(1):361–371

    Article  CAS  PubMed  Google Scholar 

  87. Otero DC, Anzelon AN, Rickert RC (2003) CD19 function in early and late B cell development: I. Maintenance of follicular and marginal zone B cells requires CD19-dependent survival signals. J Immunol 170(1):73–83

    Article  CAS  PubMed  Google Scholar 

  88. Tedder TF, Engel P (1994) CD20: a regulator of cell-cycle progression of B lymphocytes. Immunol Today 15(9):450–454. https://doi.org/10.1016/0167-5699(94)90276-3

    Article  CAS  PubMed  Google Scholar 

  89. Bernfield M, Kokenyesi R, Kato M, Hinkes MT, Spring J, Gallo RL, Lose EJ (1992) Biology of the syndecans: a family of transmembrane heparan sulfate proteoglycans. Annu Rev Cell Dev Biol 8:365–393. https://doi.org/10.1146/annurev.cb.08.110192.002053

    Article  CAS  Google Scholar 

  90. Wijdenes J, Vooijs WC, Clement C, Post J, Morard F, Vita N, Laurent P, Sun RX, Klein B, Dore JM (1996) A plasmocyte selective monoclonal antibody (B-B4) recognizes syndecan-1. Br J Haematol 94(2):318–323

    Article  CAS  PubMed  Google Scholar 

  91. Barbareschi M, Maisonneuve P, Aldovini D, Cangi MG, Pecciarini L, Angelo Mauri F, Veronese S, Caffo O, Lucenti A, Palma PD, Galligioni E, Doglioni C (2003) High syndecan-1 expression in breast carcinoma is related to an aggressive phenotype and to poorer prognosis. Cancer 98(3):474–483. https://doi.org/10.1002/cncr.11515

    Article  PubMed  Google Scholar 

  92. Rapraeger AC (2000) Syndecan-regulated receptor signaling. J Cell Biol 149(5):995–998

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Kato M, Wang H, Kainulainen V, Fitzgerald ML, Ledbetter S, Ornitz DM, Bernfield M (1998) Physiological degradation converts the soluble syndecan-1 ectodomain from an inhibitor to a potent activator of FGF-2. Nat Med 4(6):691–697

    Article  CAS  PubMed  Google Scholar 

  94. Ostuni R, Kratochvill F, Murray PJ, Natoli G (2015) Macrophages and cancer: from mechanisms to therapeutic implications. Trends Immunol 36(4):229–239. https://doi.org/10.1016/j.it.2015.02.004

    Article  CAS  PubMed  Google Scholar 

  95. Almatroodi SA, McDonald CF, Darby IA, Pouniotis DS (2016) Characterization of M1/M2 tumour-associated macrophages (TAMs) and Th1/Th2 cytokine profiles in patients with NSCLC. Cancer Microenviron 9(1):1–11. https://doi.org/10.1007/s12307-015-0174-x

    Article  CAS  PubMed  Google Scholar 

  96. Aras S, Zaidi MR (2017) TAMeless traitors: macrophages in cancer progression and metastasis. Br J Cancer 117:1583. https://doi.org/10.1038/bjc.2017.356

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Barros MH, Hauck F, Dreyer JH, Kempkes B, Niedobitek G (2013) Macrophage polarisation: an immunohistochemical approach for identifying M1 and M2 macrophages. PLoS ONE 8(11):e80908. https://doi.org/10.1371/journal.pone.0080908

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Jaguin M, Houlbert N, Fardel O, Lecureur V (2013) Polarization profiles of human M-CSF-generated macrophages and comparison of M1-markers in classically activated macrophages from GM-CSF and M-CSF origin. Cell Immunol 281(1):51–61. https://doi.org/10.1016/j.cellimm.2013.01.010

    Article  CAS  PubMed  Google Scholar 

  99. Raes G, Brys L, Dahal BK, Brandt J, Grooten J, Brombacher F, Vanham G, Noel W, Bogaert P, Boonefaes T, Kindt A, Van den Bergh R, Leenen PJ, De Baetselier P, Ghassabeh GH (2005) Macrophage galactose-type C-type lectins as novel markers for alternatively activated macrophages elicited by parasitic infections and allergic airway inflammation. J Leukoc Biol 77(3):321–327. https://doi.org/10.1189/jlb.0304212

    Article  CAS  PubMed  Google Scholar 

  100. Biswas SK, Mantovani A (2010) Macrophage plasticity and interaction with lymphocyte subsets: cancer as a paradigm. Nat Immunol 11(10):889. https://doi.org/10.1038/ni.1937

    Article  CAS  PubMed  Google Scholar 

  101. Tang X (2013) Tumor-associated macrophages as potential diagnostic and prognostic biomarkers in breast cancer. Cancer Lett 332(1):3–10. https://doi.org/10.1016/j.canlet.2013.01.024

    Article  CAS  PubMed  Google Scholar 

  102. Sica A, Saccani A, Mantovani A (2002) Tumor-associated macrophages: a molecular perspective. Int Immunopharmacol 2(8):1045–1054

    Article  CAS  PubMed  Google Scholar 

  103. Sakai Y, Honda M, Fujinaga H, Tatsumi I, Mizukoshi E, Nakamoto Y, Kaneko S (2008) Common transcriptional signature of tumor-infiltrating mononuclear inflammatory cells and peripheral blood mononuclear cells in hepatocellular carcinoma patients. Can Res 68(24):10267–10279. https://doi.org/10.1158/0008-5472.Can-08-0911

    Article  CAS  Google Scholar 

  104. Lee AH, Dublin EA, Bobrow LG (1999) Angiogenesis and expression of thymidine phosphorylase by inflammatory and carcinoma cells in ductal carcinoma in situ of the breast. J Pathol 187(3):285–290. https://doi.org/10.1002/(sici)1096-9896(199902)187:3%3c285:Aid-path238%3e3.0.Co;2-r

    Article  CAS  PubMed  Google Scholar 

  105. Eiró N, Pidal I, Fernandez-Garcia B, Junquera S, Lamelas ML, del Casar JM, González LO, López-Muñiz A, Vizoso FJ (2012) Impact of CD68/(CD3 + CD20) ratio at the invasive front of primary tumors on distant metastasis development in breast cancer. PLoS ONE 7(12):e52796. https://doi.org/10.1371/journal.pone.0052796

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Bogels M, Braster R, Nijland PG, Gul N, van de Luijtgaarden W, Fijneman RJ, Meijer GA, Jimenez CR, Beelen RH, van Egmond M (2012) Carcinoma origin dictates differential skewing of monocyte function. Oncoimmunology 1(6):798–809. https://doi.org/10.4161/onci.20427

    Article  PubMed  PubMed Central  Google Scholar 

  107. Hagemann T, Lawrence T, McNeish I, Charles KA, Kulbe H, Thompson RG, Robinson SC, Balkwill FR (2008) “Re-educating” tumor-associated macrophages by targeting NF-kappaB. J Exp Med 205(6):1261–1268. https://doi.org/10.1084/jem.20080108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Sikandar B, Qureshi MA, Mirza T, Khan S, Avesi L (2015) Differential immune cell densities in ductal carcinoma in situ and invasive breast cancer: possible role of leukocytes in early stages of carcinogenesis. Pak J Med Sci 31(2):274–279. https://doi.org/10.12669/pjms.312.6481

    Article  PubMed  PubMed Central  Google Scholar 

  109. Salgado R, Denkert C, Demaria S, Sirtaine N, Klauschen F, Pruneri G, Wienert S, Van den Eynden G, Baehner FL, Penault-Llorca F, Perez EA, Thompson EA, Symmans WF, Richardson AL, Brock J, Criscitiello C, Bailey H, Ignatiadis M, Floris G, Sparano J, Kos Z, Nielsen T, Rimm DL, Allison KH, Reis-Filho JS, Loibl S, Sotiriou C, Viale G, Badve S, Adams S, Willard-Gallo K, Loi S (2015) The evaluation of tumor-infiltrating lymphocytes (TILs) in breast cancer: recommendations by an International TILs Working Group 2014. Ann Oncol 26(2):259–271. https://doi.org/10.1093/annonc/mdu450

    Article  CAS  PubMed  Google Scholar 

  110. Tramm T, Di Caterino T, Jylling AB, Lelkaitis G, Laenkholm AV, Rago P, Tabor TP, Talman MM, Vouza E (2018) Standardized assessment of tumor-infiltrating lymphocytes in breast cancer: an evaluation of inter-observer agreement between pathologists. Acta Oncol 57(1):90–94. https://doi.org/10.1080/0284186x.2017.1403040

    Article  PubMed  Google Scholar 

  111. Dieci MV, Radosevic-Robin N, Fineberg S, van den Eynden G, Ternes N, Penault-Llorca F, Pruneri G, D’Alfonso TM, Demaria S, Castaneda C, Sanchez J, Badve S, Michiels S, Bossuyt V, Rojo F, Singh B, Nielsen T, Viale G, Kim SR, Hewitt S, Wienert S, Loibl S, Rimm D, Symmans F, Denkert C, Adams S, Loi S, Salgado R (2017) Update on tumor-infiltrating lymphocytes (TILs) in breast cancer, including recommendations to assess TILs in residual disease after neoadjuvant therapy and in carcinoma in situ: a report of the International Immuno-Oncology Biomarker Working Group on breast cancer. Semin Cancer Biol. https://doi.org/10.1016/j.semcancer.2017.10.003

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Puay Hoon Tan.

Ethics declarations

Conflict of interest

All authors declare that they have no conflict of interest.

Ethical approval

This is a review article and does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, XY., Yeong, J., Thike, A.A. et al. Prognostic role of immune infiltrates in breast ductal carcinoma in situ. Breast Cancer Res Treat 177, 17–27 (2019). https://doi.org/10.1007/s10549-019-05272-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10549-019-05272-2

Keywords

Navigation