Skip to main content

Advertisement

Log in

Secretomes reveal several novel proteins as well as TGF-β1 as the top upstream regulator of metastatic process in breast cancer

  • Preclinical study
  • Published:
Breast Cancer Research and Treatment Aims and scope Submit manuscript

A Correction to this article was published on 02 May 2018

This article has been updated

Abstract

Purpose

Metastatic breast cancer is resistant to many conventional treatments and novel therapeutic targets are needed. We previously isolated subsets of 4T1 murine breast cancer cells which metastasized to liver (4TLM), brain (4TBM), and heart (4THM). Among these cells, 4TLM is the most aggressive one, demonstrating mesenchymal phenotype. Here we compared secreted proteins from 4TLM, 4TBM, and 4THM cells and compared with that of hardly metastatic 67NR cells to detect differentially secreted factors involved in organ-specific metastasis.

Method and results

Label-free LC–MS/MS proteomic technique was used to detect the differentially secreted proteins. Eighty-five of over 500 secreted proteins were significantly altered in metastatic breast cancer cells. Differential expression of several proteins such as fibulin-4, Bone Morphogenetic Protein 1, TGF-β1 MMP-3, MMP-9, and Thymic Stromal Lymphopoietin were further verified using ELISA or Western blotting. Many of these identified proteins were also present in human metastatic breast carcinomas. Annexin A1 and A5, laminin beta 1, Neutral alpha-glucosidase AB were commonly found at least in three out of six studies examined here. Ingenuity Pathway Analysis showed that proteins differentially secreted from metastatic cells are involved primarily in carcinogenesis and TGF-β1 is the top upstream regulator in all metastatic cells.

Conclusions

Cells metastasized to different organs displayed significant differences in several of secreted proteins. Proteins differentially altered were fibronectin, insulin-like growth factor-binding protein 7, and Procollagen-lysine, 2-oxoglutarate 5-dioxygenase 1. On the other hand, many exosomal proteins were also common to all metastatic cells, demonstrating involvement of key universal factors in distant metastatic process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Change history

  • 02 May 2018

    In the original publication of the article, Acknowledgement section was missed out and Table 1 was published incompletely. The Acknowledgment and complete table 1 are given in this correction. The original article has been corrected.

References

  1. Gomes LR, Terra LF, Wailemann RA, Labriola L, Sogayar MC (2012) TGF-beta1 modulates the homeostasis between MMPs and MMP inhibitors through p38 MAPK and ERK1/2 in highly invasive breast cancer cells. BMC Cancer 12:26

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  2. Fang Y, Chen Y, Yu L, Zheng C, Qi Y, Li Z, Yang Z, Zhang Y, Shi T, Luo J, Liu M (2013) Inhibition of breast cancer metastases by a novel inhibitor of TGFbeta receptor 1. J Natl Cancer Inst 105:47–58

    Article  PubMed  CAS  Google Scholar 

  3. Valastyan S, Weinberg RA (2011) Tumor metastasis: molecular insights and evolving paradigms. Cell 147:275–292

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  4. Hess KR, Varadhachary GR, Taylor SH, Wei W, Raber MN, Lenzi R, Abbruzzese JL (2006) Metastatic patterns in adenocarcinoma. Cancer 106:1624–1633

    Article  PubMed  Google Scholar 

  5. Sakorafas GH, Tsiotou AG (2000) Ductal carcinoma in situ (DCIS) of the breast: evolving perspectives. Cancer Treat Rev 26:103–125

    Article  PubMed  CAS  Google Scholar 

  6. Erin N, Wang N, Xin P, Bui V, Weisz J, Barkan GA, Zhao W, Shearer D, Clawson GA (2009) Altered gene expression in breast cancer liver metastases. Int J Cancer 124:1503–1516

    Article  PubMed  CAS  Google Scholar 

  7. Erin N, Boyer PJ, Bonneau RH, Clawson GA, Welch DR (2004) Capsaicin-mediated denervation of sensory neurons promotes mammary tumor metastasis to lung and heart. Anticancer Res 24:1003–1009

    PubMed  Google Scholar 

  8. Erin N, Zhao W, Bylander J, Chase G, Clawson G (2006) Capsaicin-induced inactivation of sensory neurons promotes a more aggressive gene expression phenotype in breast cancer cells. Breast Cancer Res Treat 99:351–364

    Article  PubMed  CAS  Google Scholar 

  9. Erin N, Kale S, Tanriover G, Koksoy S, Duymus O, Korcum AF (2013) Differential characteristics of heart, liver, and brain metastatic subsets of murine breast carcinoma. Breast Cancer Res Treat 139:677–689

    Article  PubMed  CAS  Google Scholar 

  10. Erin N, Nizam E, Tanriover G, Koksoy S (2015) Autocrine control of MIP-2 secretion from metastatic breast cancer cells is mediated by CXCR2: a mechanism for possible resistance to CXCR2 antagonists. Breast Cancer Res Treat 150:57–69

    Article  PubMed  CAS  Google Scholar 

  11. Aslakson CJ, Miller FR (1992) Selective events in the metastatic process defined by analysis of the sequential dissemination of subpopulations of a mouse mammary tumor. Cancer Res 52:1399–1405

    PubMed  CAS  Google Scholar 

  12. Nonnis S, Maffioli E, Zanotti L, Santagata F, Negri A, Viola A, Elliman S, Tedeschiet G (2016) Effect of fetal bovine serum in culture media on MS analysis ofmesenchymal stromal cells secretome. EuPA Open Proteomics 10:28–30

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Lundberg KC, Fritz Y, Johnston A, Foster AM, Baliwag J, Gudjonsson JE, Schlatzer D, Gokulrangan G, McCormick TS, Chance MR, Ward NL (2015) Proteomics of skin proteins in psoriasis: from discovery and verification in a mouse model to confirmation in humans. Mol Cell Proteomics 14:109–119

    Article  PubMed  CAS  Google Scholar 

  14. Yerlikaya A, Okur E, Baykal AT, Acilan C, Boyaci I, Ulukaya E (2015) A proteomic analysis of p53-independent induction of apoptosis by bortezomib in 4T1 breast cancer cell line. J Proteomics 113:315–325

    Article  PubMed  CAS  Google Scholar 

  15. Gabere MN, Hussein MA, Aziz MA (2016) Filtered selection coupled with support vector machines generate a functionally relevant prediction model for colorectal cancer. Onco Targets Ther 9:3313–3325

    PubMed  PubMed Central  CAS  Google Scholar 

  16. Mi H, Huang X, Muruganujan A, Tang H, Mills C, Kang D, Thomas PD (2017) PANTHER version 11: expanded annotation data from Gene Ontology and Reactome pathways, and data analysis tool enhancements. Nucleic Acids Res 45:D183–D189

    Article  PubMed  CAS  Google Scholar 

  17. Hoshino A, Costa-Silva B, Shen TL, Rodrigues G, Hashimoto A, Tesic MM, Molina H, Kohsaka S, Di GA, Ceder S, Singh S, Williams C, Soplop N, Uryu K, Pharmer L, King T, Bojmar L, Davies AE, Ararso Y, Zhang T, Zhang H, Hernandez J, Weiss JM, Dumont-Cole VD, Kramer K, Wexler LH, Narendran A, Schwartz GK, Healey JH, Sandstrom P, Labori KJ, Kure EH, Grandgenett PM, Hollingsworth MA, de SM, Kaur S, Jain M, Mallya K, Batra SK, Jarnagin WR, Brady MS, Fodstad O, Muller V, Pantel K, Minn AJ, Bissell MJ, Garcia BA, Kang Y, Rajasekhar VK, Ghajar CM, Matei I, Peinado H, Bromberg J, Lyden D (2015) Tumour exosome integrins determine organotropic metastasis. Nature 527:329–335

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Harris DA, Patel SH, Gucek M, Hendrix A, Westbroek W, Taraska JW (2015) Exosomes released from breast cancer carcinomas stimulate cell movement. PLoS ONE 10:e0117495

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Kruger S, Abd Elmageed ZY, Hawke DH, Worner PM, Jansen DA, Abdel-Mageed AB, Alt EU, Izadpanah R (2014) Molecular characterization of exosome-like vesicles from breast cancer cells. BMC Cancer 14:44

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Vardaki I, Ceder S, Rutishauser D, Baltatzis G, Foukakis T, Panaretakis T (2016) Periostin is identified as a putative metastatic marker in breast cancer-derived exosomes. Oncotarget 7:74966–74978

    Article  PubMed  PubMed Central  Google Scholar 

  21. De GL, Andries L, Lemmens K, Van Hove I, Moons L (2015) Matrix metalloproteinases in the mouse retina: a comparative study of expression patterns and MMP antibodies. BMC Ophthalmol 15:187

    Article  CAS  Google Scholar 

  22. O’Brien K, Rani S, Corcoran C, Wallace R, Hughes L, Friel AM, McDonnell S, Crown J, Radomski MW, O’Driscoll L (2013) Exosomes from triple-negative breast cancer cells can transfer phenotypic traits representing their cells of origin to secondary cells. Eur J Cancer 49:1845–1859

    Article  PubMed  CAS  Google Scholar 

  23. Liu GL, Yang HJ, Liu T, Lin YZ (2014) Expression and significance of E-cadherin, N-cadherin, transforming growth factor-beta1 and Twist in prostate cancer. Asian Pac J Trop Med 7:76–82

    Article  PubMed  CAS  Google Scholar 

  24. Bierie B, Moses HL (2010) Transforming growth factor beta (TGF-beta) and inflammation in cancer. Cytokine Growth Factor Rev 21:49–59

    Article  PubMed  CAS  Google Scholar 

  25. Sheen YY, Kim MJ, Park SA, Park SY, Nam JS (2013) Targeting the Transforming Growth Factor-beta Signaling in Cancer Therapy. Biomol Ther (Seoul) 21:323–331

    Article  CAS  Google Scholar 

  26. Padua D, Massague J (2009) Roles of TGFbeta in metastasis. Cell Res 19:89–102

    Article  PubMed  CAS  Google Scholar 

  27. Katz LH, Li Y, Chen JS, Munoz NM, Majumdar A, Chen J, Mishra L (2013) Targeting TGF-beta signaling in cancer. Expert Opin Ther Targets 17:743–760

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Wu TC, Xu K, Banchereau R, Marches F, Yu CI, Martinek J, Anguiano E, Pedroza-Gonzalez A, Snipes GJ, O’Shaughnessy J, Nishimura S, Liu YJ, Pascual V, Banchereau J, Oh S, Palucka K (2014) Reprogramming tumor-infiltrating dendritic cells for CD103 + CD8 + mucosal T-cell differentiation and breast cancer rejection. Cancer Immunol Res 2:487–500

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. Lo KE, Ziegler SF (2014) Thymic stromal lymphopoietin and cancer. J Immunol 193:4283–4288

    Article  CAS  Google Scholar 

  30. Olkhanud PB, Rochman Y, Bodogai M, Malchinkhuu E, Wejksza K, Xu M, Gress RE, Hesdorffer C, Leonard WJ, Biragyn A (2011) Thymic stromal lymphopoietin is a key mediator of breast cancer progression. J Immunol 186:5656–5662

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Pedroza-Gonzalez A, Xu K, Wu TC, Aspord C, Tindle S, Marches F, Gallegos M, Burton EC, Savino D, Hori T, Tanaka Y, Zurawski S, Zurawski G, Bover L, Liu YJ, Banchereau J, Palucka AK (2011) Thymic stromal lymphopoietin fosters human breast tumor growth by promoting type 2 inflammation. J Exp Med 208:479–490

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. De ML, Reni M, Tassi E, Clavenna D, Papa I, Recalde H, Braga M, Di CV, Doglio C, Protti MP (2011) Intratumor T helper type 2 cell infiltrate correlates with cancer-associated fibroblast thymic stromal lymphopoietin production and reduced survival in pancreatic cancer. J Exp Med 208:469–478

    Article  CAS  Google Scholar 

  33. Di PM, Nowell CS, Koch U, Durham AD, Radtke F (2012) Loss of cutaneous TSLP-dependent immune responses skews the balance of inflammation from tumor protective to tumor promoting. Cancer Cell 22:479–493

    Article  CAS  Google Scholar 

  34. Demehri S, Turkoz A, Manivasagam S, Yockey LJ, Turkoz M, Kopan R (2012) Elevated epidermal thymic stromal lymphopoietin levels establish an antitumor environment in the skin. Cancer Cell 22:494–505

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Elliott RL, Blobe GC (2005) Role of transforming growth factor Beta in human cancer. J Clin Oncol 23:2078–2093

    Article  PubMed  CAS  Google Scholar 

  36. Wu X, Liu T, Fang O, Leach LJ, Hu X, Luo Z (2014) miR-194 suppresses metastasis of non-small cell lung cancer through regulating expression of BMP1 and p27(kip1). Oncogene 33:1506–1514

    Article  PubMed  CAS  Google Scholar 

  37. Zhang C, Shu L, Kim H, Khor TO, Wu R, Li W, Kong AN (2016) Phenethyl isothiocyanate (PEITC) suppresses prostate cancer cell invasion epigenetically through regulating microRNA-194. Mol Nutr Food Res 60:1427–1436

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. da SR, Uno M, Marie SK, Oba-Shinjo SM (2015) LOX expression and functional analysis in astrocytomas and impact of IDH1 mutation. PLoS ONE 10:e0119781

    Article  CAS  Google Scholar 

  39. Yao L, Lao W, Zhang Y, Tang X, Hu X, He C, Hu X, Xu LX (2012) Identification of EFEMP2 as a serum biomarker for the early detection of colorectal cancer with lectin affinity capture assisted secretome analysis of cultured fresh tissues. J Proteome Res 11:3281–3294

    Article  PubMed  CAS  Google Scholar 

  40. Wang L, Chen Q, Chen Z, Tian D, Xu H, Cai Q, Liu B, Deng G (2015) EFEMP2 is upregulated in gliomas and promotes glioma cell proliferation and invasion. Int J Clin Exp Pathol 8:10385–10393

    PubMed  PubMed Central  CAS  Google Scholar 

  41. Chen J, Liu Z, Fang S, Fang R, Liu X, Zhao Y, Li X, Huang L, Zhang J (2015) Fibulin-4 is associated with tumor progression and a poor prognosis in ovarian carcinomas. BMC Cancer 15:91

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  42. Chen Z, Yu K, Zhu F, Gorczynski R (2016) Over-Expression of CD200 Protects Mice from Dextran Sodium Sulfate Induced Colitis. PLoS ONE 11:e0146681

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  43. Li R, Wang L (2016) Fibulin-4 is a novel Wnt/beta-Catenin pathway activator in human osteosarcoma. Biochem Biophys Res Commun 474:730–735

    Article  PubMed  CAS  Google Scholar 

  44. Zhang Y, Long J, Lu W, Shu XO, Cai Q, Zheng Y, Li C, Li B, Gao YT, Zheng W (2014) Rare coding variants and breast cancer risk: evaluation of susceptibility Loci identified in genome-wide association studies. Cancer Epidemiol Biomarkers Prev 23:622–628

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  45. Zhang D, Wang S, Chen J, Liu H, Lu J, Jiang H, Huang A, Chen Y (2017) Fibulin-4 promotes osteosarcoma invasion and metastasis by inducing epithelial to mesenchymal transition via the PI3 K/Akt/mTOR pathway. Int J Oncol 50:1513–1530

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  46. Shangguan L, Ning G, Luo Z, Zhou Y (2017) Fibulin-4 reduces extracellular matrix production and suppresses chondrocyte differentiation via. Int J Biol Macromol 99:293–299

    Article  PubMed  CAS  Google Scholar 

  47. Moran A, Iniesta P, Garcia-Aranda C, De JC, Diaz-Lopez A, Sanchez-Pernaute A, Torres AJ, Diaz-Rubio E, Balibrea JL, Benito M (2005) Clinical relevance of MMP-9, MMP-2, TIMP-1 and TIMP-2 in colorectal cancer. Oncol Rep 13:115–120

    PubMed  CAS  Google Scholar 

  48. Waas ET, Lomme RM, DeGroot J, Wobbes T, Hendriks T (2002) Tissue levels of active matrix metalloproteinase-2 and -9 in colorectal cancer. Br J Cancer 86:1876–1883

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  49. Zeng ZS, Huang Y, Cohen AM, Guillem JG (1996) Prediction of colorectal cancer relapse and survival via tissue RNA levels of matrix metalloproteinase-9. J Clin Oncol 14:3133–3140

    Article  PubMed  CAS  Google Scholar 

  50. Reis ST, Pontes-Junior J, Antunes AA, de Sousa-Canavez JM, Dall’Oglio MF, Passerotti CC, Abe DK, Crippa A, da Cruz JA, Timoszczuk LM, Srougi M, Leite KR (2011) MMP-9 overexpression due to TIMP-1 and RECK underexpression is associated with prognosis in prostate cancer. Int J Biol Markers 26:255–261

    Article  PubMed  CAS  Google Scholar 

  51. Sakata K, Shigemasa K, Nagai N, Ohama K (2000) Expression of matrix metalloproteinases (MMP-2, MMP-9, MT1-MMP) and their inhibitors (TIMP-1, TIMP-2) in common epithelial tumors of the ovary. Int J Oncol 17:673–681

    PubMed  CAS  Google Scholar 

  52. Hazar B, Polat G, Seyrek E, Bagdatoglglu O, Kanik A, Tiftik N (2004) Prognostic value of matrix metalloproteinases (MMP-2 and MMP-9) in Hodgkin’s and non-Hodgkin’s lymphoma. Int J Clin Pract 58:139–143

    Article  PubMed  CAS  Google Scholar 

  53. Puzovic V, Brcic I, Ranogajec I, Jakic-Razumovic J (2014) Prognostic values of ETS-1, MMP-2 and MMP-9 expression and co-expression in breast cancer patients. Neoplasma 61:439–446

    Article  PubMed  CAS  Google Scholar 

  54. Peng WJ, Zhang JQ, Wang BX, Pan HF, Lu MM, Wang J (2012) Prognostic value of matrix metalloproteinase 9 expression in patients with non-small cell lung cancer. Clin Chim Acta 413:1121–1126

    Article  PubMed  CAS  Google Scholar 

  55. Lochter A, Galosy S, Muschler J, Freedman N, Werb Z, Bissell MJ (1997) Matrix metalloproteinase stromelysin-1 triggers a cascade of molecular alterations that leads to stable epithelial-to-mesenchymal conversion and a premalignant phenotype in mammary epithelial cells. J Cell Biol 139:1861–1872

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  56. Barajas-Castaneda LM, Cortes-Gutierrez E, Garcia-Rodriguez FM, Campos-Rodriguez R, Lara-Padilla E, Enriquez-Rincon F, Castro-Mussot ME, Figueroa-Arredondo P (2016) Overexpression of MMP-3 and uPA with Diminished PAI-1 Related to Metastasis in Ductal Breast Cancer Patients Attending a Public Hospital in Mexico City. J Immunol Res 2016:8519648

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  57. Huang JF, Du WX, Chen JJ (2016) Elevated expression of matrix metalloproteinase-3 in human osteosarcoma and its association with tumor metastasis. J BUON 21:1279–1286

    PubMed  Google Scholar 

  58. Mehner C, Miller E, Nassar A, Bamlet WR, Radisky ES, Radisky DC (2015) Tumor cell expression of MMP3 as a prognostic factor for poor survival in pancreatic, pulmonary, and mammary carcinoma. Genes Cancer 6:480–489

    PubMed  PubMed Central  CAS  Google Scholar 

  59. Savagner P (2001) Leaving the neighborhood: molecular mechanisms involved during epithelial-mesenchymal transition. BioEssays 23:912–923

    Article  PubMed  CAS  Google Scholar 

  60. Nakajima S, Doi R, Toyoda E, Tsuji S, Wada M, Koizumi M, Tulachan SS, Ito D, Kami K, Mori T, Kawaguchi Y, Fujimoto K, Hosotani R, Imamura M (2004) N-cadherin expression and epithelial-mesenchymal transition in pancreatic carcinoma. Clin Cancer Res 10:4125–4133

    Article  PubMed  CAS  Google Scholar 

  61. Hazan RB, Phillips GR, Qiao RF, Norton L, Aaronson SA (2000) Exogenous expression of N-cadherin in breast cancer cells induces cell migration, invasion, and metastasis. J Cell Biol 148:779–790

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  62. Schor SL, Schor AM (2001) Phenotypic and genetic alterations in mammary stroma: implications for tumour progression. Breast Cancer Res 3:373–379

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  63. Fernandez-Garcia B, Eiro N, Marin L, Gonzalez-Reyes S, Gonzalez LO, Lamelas ML, Vizoso FJ (2014) Expression and prognostic significance of fibronectin and matrix metalloproteases in breast cancer metastasis. Histopathology 64:512–522

    Article  PubMed  Google Scholar 

  64. Burger AM, Zhang X, Li H, Ostrowski JL, Beatty B, Venanzoni M, Papas T, Seth A (1998) Down-regulation of T1A12/mac25, a novel insulin-like growth factor binding protein related gene, is associated with disease progression in breast carcinomas. Oncogene 16:2459–2467

    Article  PubMed  CAS  Google Scholar 

  65. Swisshelm K, Ryan K, Tsuchiya K, Sager R (1995) Enhanced expression of an insulin growth factor-like binding protein (mac25) in senescent human mammary epithelial cells and induced expression with retinoic acid. Proc Natl Acad Sci U S A 92:4472–4476

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  66. Sprenger CC, Damon SE, Hwa V, Rosenfeld RG, Plymate SR (1999) Insulin-like growth factor binding protein-related protein 1 (IGFBP-rP1) is a potential tumor suppressor protein for prostate cancer. Cancer Res 59:2370–2375

    PubMed  CAS  Google Scholar 

  67. Chen Y, Cui T, Knosel T, Yang L, Zoller K, Petersen I (2011) IGFBP7 is a p53 target gene inactivated in human lung cancer by DNA hypermethylation. Lung Cancer 73:38–44

    Article  PubMed  Google Scholar 

  68. Tosun A, Kurtgoz S, Dursun S, Bozkurt G (2014) A case of Ehlers-Danlos syndrome type VIA with a novel PLOD1 gene mutation. Pediatr Neurol 51:566–569

    Article  PubMed  Google Scholar 

  69. Guo C, Liu S, Sun MZ (2013) Potential role of Anxa1 in cancer. Future Oncol 9:1773–1793

    Article  PubMed  CAS  Google Scholar 

  70. Wang KL, Wu TT, Resetkova E, Wang H, Correa AM, Hofstetter WL, Swisher SG, Ajani JA, Rashid A, Hamilton SR, Albarracin CT (2006) Expression of annexin A1 in esophageal and esophagogastric junction adenocarcinomas: association with poor outcome. Clin Cancer Res 12:4598–4604

    Article  PubMed  CAS  Google Scholar 

  71. Boudhraa Z, Rondepierre F, Ouchchane L, Kintossou R, Trzeciakiewicz A, Franck F, Kanitakis J, Labeille B, Joubert-Zakeyh J, Bouchon B, Perrot JL, Mansard S, Papon J, Dechelotte P, Chezal JM, Miot-Noirault E, Bonnet M, D’Incan M, Degoul F (2014) Annexin A1 in primary tumors promotes melanoma dissemination. Clin Exp Metastasis 31:749–760

    Article  PubMed  CAS  Google Scholar 

  72. Schwartz-Albiez R, Koretz K, Moller P, Wirl G (1993) Differential expression of annexins I and II in normal and malignant human mammary epithelial cells. Differentiation 52:229–237

    Article  PubMed  CAS  Google Scholar 

  73. de GM, van Miltenburg MH, Schmidt MK, Pont C, Lalai R, Kartopawiro J, Pardali E, Le Devedec SE, Smit VT, van der Wal A, Van’t Veer LJ, Cleton-Jansen AM, Ten DP, van de Water B (2010) Annexin A1 regulates TGF-beta signaling and promotes metastasis formation of basal-like breast cancer cells. Proc Natl Acad Sci U S A 107:6340–6345

    Article  Google Scholar 

  74. Yom CK, Han W, Kim SW, Kim HS, Shin HC, Chang JN, Koo M, Noh DY, Moon BI (2011) Clinical significance of annexin A1 expression in breast cancer. J Breast Cancer 14:262–268

    Article  PubMed  PubMed Central  Google Scholar 

  75. Sobral-Leite M, Wesseling J, Smit VT, Nevanlinna H, van Miltenburg MH, Sanders J, Hofland I, Blows FM, Coulson P, Patrycja G, Schellens JH, Fagerholm R, Heikkila P, Aittomaki K, Blomqvist C, Provenzano E, Ali HR, Figueroa J, Sherman M, Lissowska J, Mannermaa A, Kataja V, Kosma VM, Hartikainen JM, Phillips KA, Couch FJ, Olson JE, Vachon C, Visscher D, Brenner H, Butterbach K, Arndt V, Holleczek B, Hooning MJ, Hollestelle A, Martens JW, van Deurzen CH, van de Water B, Broeks A, Chang-Claude J, Chenevix-Trench G, Easton DF, Pharoah PD, Garcia-Closas M, de GM, Schmidt MK (2015) Annexin A1 expression in a pooled breast cancer series: association with tumor subtypes and prognosis. BMC Med 13:156

  76. Peng B, Guo C, Guan H, Liu S, Sun MZ (2014) Annexin A5 as a potential marker in tumors. Clin Chim Acta 427:42–48

    Article  PubMed  CAS  Google Scholar 

  77. Castronovo V (1993) Laminin receptors and laminin-binding proteins during tumor invasion and metastasis. Invasion Metastasis 13:1–30

    PubMed  CAS  Google Scholar 

  78. Lin Q, Lim HS, Lin HL, Tan HT, Lim TK, Cheong WK, Cheah PY, Tang CL, Chow PK, Chung MC (2015) Analysis of colorectal cancer glyco-secretome identifies laminin beta-1 (LAMB1) as a potential serological biomarker for colorectal cancer. Proteomics 15:3905–3920

    Article  PubMed  CAS  Google Scholar 

  79. Virga J, Bognar L, Hortobagyi T, Zahuczky G, Csosz E, Kallo G, Toth J, Hutoczki G, Remenyi-Puskar J, Steiner L, Klekner A (2017) Prognostic Role of the Expression of Invasion-Related Molecules in Glioblastoma. J Neurol Surg A Cent Eur Neurosurg 78:12–19

    PubMed  Google Scholar 

  80. Alinezhad S, Vaananen RM, Mattsson J, Li Y, Tallgren T, Tong ON, Bjartell A, Akerfelt M, Taimen P, Bostrom PJ, Pettersson K, Nees M (2016) Validation of novel biomarkers for prostate cancer progression by the combination of bioinformatics, Clinical and Functional Studies. PLoS One 11:e0155901

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  81. Govaere O, Petz M, Wouters J, Vandewynckel YP, Scott EJ, Topal B, Nevens F, Verslype C, Anstee QM, Van VH, Mikulits W, Roskams T (2017) The PDGFRalpha-laminin B1-keratin 19 cascade drives tumor progression at the invasive front of human hepatocellular carcinoma. Oncogene 36:6605–6616

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  82. Januchowski R, Zawierucha P, Rucinski M, Nowicki M, Zabel M (2014) Extracellular matrix proteins expression profiling in chemoresistant variants of the A2780 ovarian cancer cell line. Biomed Res Int 2014:365867

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  83. Qin Y, Zhao L, Wang X, Tong D, Hoover C, Wu F, Liu Y, Wang L, Liu L, Ni L, Song T, Huang C (2017) MeCP2 regulated glycogenes contribute to proliferation and apoptosis of gastric cancer cells. Glycobiology 27:306–317

    PubMed  Google Scholar 

  84. Sanchez-Fernandez EM, Risquez-Cuadro R, Chasseraud M, Ahidouch A, Ortiz MC, Ouadid-Ahidouch H, Garcia Fernandez JM (2010) Synthesis of N-, S-, and C-glycoside castanospermine analogues with selective neutral alpha-glucosidase inhibitory activity as antitumour agents. Chem Commun (Camb) 46:5328–5330

    Article  CAS  Google Scholar 

  85. Bourdi M, Demady D, Martin JL, Jabbour SK, Martin BM, George JW, Pohl LR (1995) cDNA cloning and baculovirus expression of the human liver endoplasmic reticulum P58: characterization as a protein disulfide isomerase isoform, but not as a protease or a carnitine acyltransferase. Arch Biochem Biophys 323:397–403

    Article  PubMed  CAS  Google Scholar 

  86. Hirano N, Shibasaki F, Sakai R, Tanaka T, Nishida J, Yazaki Y, Takenawa T, Hirai H (1995) Molecular cloning of the human glucose-regulated protein ERp57/GRP58, a thiol-dependent reductase. Identification of its secretory form and inducible expression by the oncogenic transformation. Eur J Biochem 234:336–342

    Article  PubMed  CAS  Google Scholar 

  87. Ramos FS, Serino LT, Carvalho CM, Lima RS, Urban CA, Cavalli IJ, Ribeiro EM (2015) PDIA3 and PDIA6 gene expression as an aggressiveness marker in primary ductal breast cancer. Genet Mol Res 14:6960–6967

    Article  PubMed  CAS  Google Scholar 

  88. Santana-Codina N, Carretero R, Sanz-Pamplona R, Cabrera T, Guney E, Oliva B, Clezardin P, Olarte OE, Loza-Alvarez P, Mendez-Lucas A, Perales JC, Sierra A (2013) A transcriptome-proteome integrated network identifies endoplasmic reticulum thiol oxidoreductase (ERp57) as a hub that mediates bone metastasis. Mol Cell Proteomics 12:2111–2125

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  89. Fidler IJ (2003) The pathogenesis of cancer metastasis: the ‘seed and soil’ hypothesis revisited. Nat Rev Cancer 3:453–458

    Article  PubMed  CAS  Google Scholar 

  90. Hart IR, Fidler IJ (1980) Role of organ selectivity in the determination of metastatic patterns of B16 melanoma. Cancer Res 40:2281–2287

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This study was supported by TUBITAK. Grant No: 115Z286.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nuray Erin.

Additional information

The original version of this article was revised: In the original publication of the article, Acknowledgement section was missed out and table 1 was published incompletely.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 33 kb)

Supplementary material 2 (PDF 131 kb)

10549_2018_4752_MOESM3_ESM.xls

Supplementary material 3 (XLS 1103 kb). Supplemental Table 1: Total of 1855 peptides mapping to 592 proteins secreted into the conditioned medium. Each colored column represents the peptide scores identified in certain cells. Yellow: 67NR cells, green: 4TBM cells, red: 4TLM cells, orange: 4THM cells.

10549_2018_4752_MOESM4_ESM.xlsx

Supplementary material 4 (XLSX 43 kb). Supplemental Table 2: 224 peptides mapping to 85 different proteins which were significantly altered. Each colored column represent the peptide scores identified in certain cells. Yellow: 67NR cells, green: 4TBM cells, red: 4TLM cells, orange: 4THM cells.

10549_2018_4752_MOESM5_ESM.xls

Supplementary material 5 (XLS 31 kb). Supplemental Table 3: Localization of significantly altered proteins. Data was obtained from Panther.org. Non-exosomal proteins were shown in yellow lines.

10549_2018_4752_MOESM6_ESM.xlsx

Supplementary material 6 (XLSX 42 kb). Supplemental Table 4: List of proteins in our study overlapped with at least two other studies.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Erin, N., Ogan, N. & Yerlikaya, A. Secretomes reveal several novel proteins as well as TGF-β1 as the top upstream regulator of metastatic process in breast cancer. Breast Cancer Res Treat 170, 235–250 (2018). https://doi.org/10.1007/s10549-018-4752-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10549-018-4752-8

Keywords

Navigation