Skip to main content

Advertisement

Log in

Autocrine control of MIP-2 secretion from metastatic breast cancer cells is mediated by CXCR2: a mechanism for possible resistance to CXCR2 antagonists

  • Preclinical study
  • Published:
Breast Cancer Research and Treatment Aims and scope Submit manuscript

Abstract

CXCR2 interacts with a wide range of chemokines and CXCR2 antagonists may have therapeutic value for treatment-resistant metastatic carcinomas. We aimed to explore regulation of activity of CXCR2 and its ligand, MIP-2, in metastatic breast carcinoma. We used mouse breast carcinoma cells metastasize to brain (4TBM), liver (4TLM), and heart (4THM) and explored the extra- and intracellular mechanisms effecting MIP-2 secretion using CXCR2 antagonist and inhibitors of downstream signaling molecules. 4TBM, 4TLM, and 4THM cells include cancer stem cell features and metastasize extensively. We also determined kinetics of MIP-2 secretion in 4T1 and non-metastatic 67NR mouse breast carcinoma cells. We found that there is an autocrine-inhibition of MIP-2 secretion. Specifically, metastatic cells selectively express CXCR2 only, and not CXCR1 and attenuating CXCR2 activity with SB225002 increased MIP-2 secretion. This may be due to the inhibition of protein kinase C (PKC) activity since RO318220; a specific inhibitor of PKC also increased MIP-2 secretion. Attenuating CXCR2 activity with SB225002, otherwise suppressed proliferation of 4THM and 4TBM cells. Tumor explants and cancer-associated fibroblasts obtained from 4TLM, 4THM, and 4TBM primary tumors secreted high levels of MIP-2. Surprisingly, CXCR2 expression was low in 4TLM cells demonstrating that liver metastatic cells might be resistant to the anti-tumoral effects of CXCR2 antagonists. Our results demonstrated that resistance to anti-proliferative effects of CXCR2 may also arise from feedback increases in MIP-2 secretion. Activation of PI3 K pathway augments MIP-2 secretion, hence possible resistance to the antitumor effects of CXCR2 antagonists might be prevented with inhibitors of PI3 K.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

CXCR2:

Chemokine (C-X-C motif) receptor 2

IL8 or CXCL8:

Interleukin 8

MIP2:

Macrophage inflammatory protein 2

4THM:

4T1 heart metastasis

4TLM:

4T1 liver metastasis

4TBM:

4T1 brain metastasis

CAF:

Cancer-associated fibroblasts

References

  1. Murphy PM, Tiffany HL (2009) Cloning of complementary DNA encoding a functional human interleukin-8 receptor. J Immunol 183:2898–2901

    CAS  PubMed  Google Scholar 

  2. Fan X, Patera AC, Pong-Kennedy A, Deno G, Gonsiorek W, Manfra DJ, Vassileva G, Zeng M, Jackson C, Sullivan L, Sharif-Rodriguez W, Opdenakker G, Van DJ, Hedrick JA, Lundell D, Lira SA, Hipkin RW (2007) Murine CXCR1 is a functional receptor for GCP-2/CXCL6 and interleukin-8/CXCL8. J Biol Chem 282:11658–11666

    Article  CAS  PubMed  Google Scholar 

  3. Tekamp-Olson P, Gallegos C, Bauer D, McClain J, Sherry B, Fabre M, van Deventer A S, Cerami A (1990) Cloning and characterization of cDNAs for murine macrophage inflammatory protein 2 and its human homologues. J Exp Med 172:911–919

    Article  CAS  PubMed  Google Scholar 

  4. Bozic CR, Kolakowski LF Jr, Gerard NP, Garcia-Rodriguez C, von Uexkull-Guldenband C, Conklyn MJ, Breslow R, Showell HJ, Gerard C (1995) Expression and biologic characterization of the murine chemokine KC. J Immunol 154:6048–6057

    CAS  PubMed  Google Scholar 

  5. Cacalano G, Lee J, Kikly K, Ryan AM, Pitts-Meek S, Hultgren B, Wood WI, Moore MW (1994) Neutrophil and B cell expansion in mice that lack the murine IL-8 receptor homolog. Science 265:682–684

    Article  CAS  PubMed  Google Scholar 

  6. Addison CL, Daniel TO, Burdick MD, Liu H, Ehlert JE, Xue YY, Buechi L, Walz A, Richmond A, Strieter RM (2000) The CXC chemokine receptor 2, CXCR2, is the putative receptor for ELR + CXC chemokine-induced angiogenic activity. J Immunol 165:5269–5277

    Article  CAS  PubMed  Google Scholar 

  7. Mestas J, Burdick MD, Reckamp K, Pantuck A, Figlin RA, Strieter RM (2005) The role of CXCR2/CXCR2 ligand biological axis in renal cell carcinoma. J Immunol 175:5351–5357

    Article  CAS  PubMed  Google Scholar 

  8. Heidemann J, Ogawa H, Dwinell MB, Rafiee P, Maaser C, Gockel HR, Otterson MF, Ota DM, Lugering N, Domschke W, Binion DG (2003) Angiogenic effects of interleukin 8 (CXCL8) in human intestinal microvascular endothelial cells are mediated by CXCR2. J Biol Chem 278:8508–8515

    Article  CAS  PubMed  Google Scholar 

  9. Miller LJ, Kurtzman SH, Wang Y, Anderson KH, Lindquist RR, Kreutzer DL (1998) Expression of interleukin-8 receptors on tumor cells and vascular endothelial cells in human breast cancer tissue. Anticancer Res 18:77–81

    CAS  PubMed  Google Scholar 

  10. Norgauer J, Metzner B, Schraufstatter I (1996) Expression and growth-promoting function of the IL-8 receptor beta in human melanoma cells. J Immunol 156:1132–1137

    CAS  PubMed  Google Scholar 

  11. Takamori H, Oades ZG, Hoch OC, Burger M, Schraufstatter IU (2000) Autocrine growth effect of IL-8 and GROalpha on a human pancreatic cancer cell line, Capan-1. Pancreas 21:52–56

    Article  CAS  PubMed  Google Scholar 

  12. Freund A, Chauveau C, Brouillet JP, Lucas A, Lacroix M, Licznar A, Vignon F, Lazennec G (2003) IL-8 expression and its possible relationship with estrogen-receptor-negative status of breast cancer cells. Oncogene 22:256–265

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  13. Kamali-Sarvestani E, Aliparasti MR, Atefi S (2007) Association of interleukin-8 (IL-8 or CXCL8) -251T/A and CXCR2 +1208C/T gene polymorphisms with breast cancer. Neoplasma 54:484–489

    CAS  PubMed  Google Scholar 

  14. Burger M, Burger JA, Hoch RC, Oades Z, Takamori H, Schraufstatter IU (1999) Point mutation causing constitutive signaling of CXCR2 leads to transforming activity similar to Kaposi’s sarcoma herpesvirus-G protein-coupled receptor. J Immunol 163:2017–2022

    CAS  PubMed  Google Scholar 

  15. Singh S, Sadanandam A, Singh RK (2007) Chemokines in tumor angiogenesis and metastasis. Cancer Metastasis Rev 26:453–467

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  16. Richmond A, Yang J, Su Y (2009) The good and the bad of chemokines/chemokine receptors in melanoma. Pigment Cell Melanoma Res 22:175–186

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  17. Hu D, Du C, Xue W, Dou F, Yao Y, Gu J (2013) The expression of chemokine receptors CCR6, CXCR2 and CXCR4 is not organ-specific for distant metastasis in colorectal cancer: a comparative study. Histopathology 63:167–173

    Article  PubMed  Google Scholar 

  18. Liu S, Ginestier C, Ou SJ, Clouthier SG, Patel SH, Monville F, Korkaya H, Heath A, Dutcher J, Kleer CG, Jung Y, Dontu G, Taichman R, Wicha MS (2011) Breast cancer stem cells are regulated by mesenchymal stem cells through cytokine networks. Cancer Res 71:614–624

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  19. Shen H, Schuster R, Lu B, Waltz SE, Lentsch AB (2006) Critical and opposing roles of the chemokine receptors CXCR2 and CXCR3 in prostate tumor growth. Prostate 66:1721–1728

    Article  CAS  PubMed  Google Scholar 

  20. Dhawan P, Richmond A (2002) Role of CXCL1 in tumorigenesis of melanoma. J Leukoc Biol 72:9–18

    PubMed Central  CAS  PubMed  Google Scholar 

  21. Bordoni R, Fine R, Murray D, Richmond A (1990) Characterization of the role of melanoma growth stimulatory activity (MGSA) in the growth of normal melanocytes, nevocytes, and malignant melanocytes. J Cell Biochem 44:207–219

    Article  CAS  PubMed  Google Scholar 

  22. Acharyya S, Oskarsson T, Vanharanta S, Malladi S, Kim J, Morris PG, Manova-Todorova K, Leversha M, Hogg N, Seshan VE, Norton L, Brogi E, Massague J (2012) A CXCL1 paracrine network links cancer chemoresistance and metastasis. Cell 150:165–178

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  23. Scapini P, Morini M, Tecchio C, Minghelli S, Di CE, Tanghetti E, Albini A, Lowell C, Berton G, Noonan DM, Cassatella MA (2004) CXCL1/macrophage inflammatory protein-2-induced angiogenesis in vivo is mediated by neutrophil-derived vascular endothelial growth factor-A. J Immunol 172:5034–5040

    Article  CAS  PubMed  Google Scholar 

  24. Leitner JM, Mayr FB, Firbas C, Spiel AO, Steinlechner B, Novellini R, Jilma B (2007) Reparixin, a specific interleukin-8 inhibitor, has no effects on inflammation during endotoxemia. Int J Immunopathol Pharmacol 20:25–36

    CAS  PubMed  Google Scholar 

  25. Erin N, Boyer PJ, Bonneau RH, Clawson GA, Welch DR (2004) Capsaicin-mediated denervation of sensory neurons promotes mammary tumor metastasis to lung and heart. Anticancer Res 24:1003–1009

    PubMed  Google Scholar 

  26. Erin N, Zhao W, Bylander J, Chase G, Clawson G (2006) Capsaicin-induced inactivation of sensory neurons promotes a more aggressive gene expression phenotype in breast cancer cells. Breast Cancer Res Treat 99:351–364

    Article  CAS  PubMed  Google Scholar 

  27. Erin N, Wang N, Xin P, Bui V, Weisz J, Barkan GA, Zhao W, Shearer D, Clawson GA (2009) Altered gene expression in breast cancer liver metastases. Int J Cancer 124:1503–1516

    Article  CAS  PubMed  Google Scholar 

  28. Erin N, Kale S, Tanriover G, Koksoy S, Duymus O, Korcum AF (2013) Differential characteristics of heart, liver, and brain metastatic subsets of murine breast carcinoma. Breast Cancer Res Treat 139:677–689

    Article  CAS  PubMed  Google Scholar 

  29. Aslakson CJ, Miller FR (1992) Selective events in the metastatic process defined by analysis of the sequential dissemination of subpopulations of a mouse mammary tumor. Cancer Res 52:1399–1405

    CAS  PubMed  Google Scholar 

  30. Erin N, Podnos A, Tanriover G, Duymus O, Cote E, Khatri I, Gorczynski RM (2014) Bidirectional effect of CD200 on breast cancer development and metastasis, with ultimate outcome determined by tumor aggressiveness and a cancer-induced inflammatory response. Oncogene. doi:10.1038/onc.2014.317

    PubMed  Google Scholar 

  31. Ercan F, Cetinel S, Erin N, Aydin H, Hurdag C, Parker T, Parker K, Mayhew T (2003) Volume of nerve fibers in the stress-induced bladder of adult rats following capsaicin treatment. Urol Int 71:393–398

    Article  CAS  PubMed  Google Scholar 

  32. Dalaklioglu S, Tasatargil A, Kale S, Tanriover G, Dilmac S, Erin N (2013) Metastatic breast carcinoma induces vascular endothelial dysfunction in Balb-c mice: role of the tumor necrosis factor-alpha and NADPH oxidase. Vascul Pharmacol 59:103–111

    Article  CAS  PubMed  Google Scholar 

  33. Dunn KL, Espino PS, Drobic B, He S, Davie JR (2005) The Ras-MAPK signal transduction pathway, cancer and chromatin remodeling. Biochem Cell Biol 83:1–14

    Article  CAS  PubMed  Google Scholar 

  34. Yoon S, Seger R (2006) The extracellular signal-regulated kinase: multiple substrates regulate diverse cellular functions. Growth Factors 24:21–44

    Article  CAS  PubMed  Google Scholar 

  35. Dong YL, Kabir SM, Lee ES, Son DS (2013) CXCR2-driven ovarian cancer progression involves upregulation of proinflammatory chemokines by potentiating NF-kappaB activation via EGFR-transactivated AKT signaling. PLoS One 8:e83789

    Article  PubMed Central  PubMed  Google Scholar 

  36. Alessi DR, Cuenda A, Cohen P, Dudley DT, Saltiel AR (1995) PD098059 is a specific inhibitor of the activation of mitogen-activated protein kinase kinase in vitro and in vivo. J Biol Chem 270:27489–27494

    Article  CAS  PubMed  Google Scholar 

  37. Favata MF, Horiuchi KY, Manos EJ, Daulerio AJ, Stradley DA, Feeser WS, Van Dyk DE, Pitts WJ, Earl RA, Hobbs F, Copeland RA, Magolda RL, Scherle PA, Trzaskos JM (1998) Identification of a novel inhibitor of mitogen-activated protein kinase kinase. J Biol Chem 273:18623–18632

    Article  CAS  PubMed  Google Scholar 

  38. Bohrer LR, Schwertfeger KL (2012) Macrophages promote fibroblast growth factor receptor-driven tumor cell migration and invasion in a CXCR2-dependent manner. Mol Cancer Res 10:1294–1305

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  39. Waugh DJ, Wilson C (2008) The interleukin-8 pathway in cancer. Clin Cancer Res 14:6735–6741

    Article  CAS  PubMed  Google Scholar 

  40. Charafe-Jauffret E, Ginestier C, Iovino F, Wicinski J, Cervera N, Finetti P, Hur MH, Diebel ME, Monville F, Dutcher J, Brown M, Viens P, Xerri L, Bertucci F, Stassi G, Dontu G, Birnbaum D, Wicha MS (2009) Breast cancer cell lines contain functional cancer stem cells with metastatic capacity and a distinct molecular signature. Cancer Res 69:1302–1313

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  41. Fernando RI, Castillo MD, Litzinger M, Hamilton DH, Palena C (2011) IL-8 signaling plays a critical role in the epithelial-mesenchymal transition of human carcinoma cells. Cancer Res 71:5296–5306

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  42. Varney ML, Singh S, Li A, Mayer-Ezell R, Bond R, Singh RK (2011) Small molecule antagonists for CXCR2 and CXCR1 inhibit human colon cancer liver metastases. Cancer Lett 300:180–188

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  43. Wang B, Hendricks DT, Wamunyokoli F, Parker MI (2006) A growth-related oncogene/CXC chemokine receptor 2 autocrine loop contributes to cellular proliferation in esophageal cancer. Cancer Res 66:3071–3077

    Article  CAS  PubMed  Google Scholar 

  44. Matsuo Y, Raimondo M, Woodward TA, Wallace MB, Gill KR, Tong Z, Burdick MD, Yang Z, Strieter RM, Hoffman RM, Guha S (2009) CXC-chemokine/CXCR2 biological axis promotes angiogenesis in vitro and in vivo in pancreatic cancer. Int J Cancer 125:1027–1037

    Article  CAS  PubMed  Google Scholar 

  45. White JR, Lee JM, Young PR, Hertzberg RP, Jurewicz AJ, Chaikin MA, Widdowson K, Foley JJ, Martin LD, Griswold DE, Sarau HM (1998) Identification of a potent, selective non-peptide CXCR2 antagonist that inhibits interleukin-8-induced neutrophil migration. J Biol Chem 273:10095–10098

    Article  CAS  PubMed  Google Scholar 

  46. Wu D, LaRosa GJ, Simon MI (1993) G protein-coupled signal transduction pathways for interleukin-8. Science 261:101–103

    Article  CAS  PubMed  Google Scholar 

  47. Raghuwanshi SK, Su Y, Singh V, Haynes K, Richmond A, Richardson RM (2012) The chemokine receptors CXCR1 and CXCR2 couple to distinct G protein-coupled receptor kinases to mediate and regulate leukocyte functions. J Immunol 189:2824–2832

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  48. Ning Y, Labonte MJ, Zhang W, Bohanes PO, Gerger A, Yang D, Benhaim L, Paez D, Rosenberg DO, Nagulapalli Venkata KC, Louie SG, Petasis NA, Ladner RD, Lenz HJ (2012) The CXCR2 antagonist, SCH-527123, shows antitumor activity and sensitizes cells to oxaliplatin in preclinical colon cancer models. Mol Cancer Ther 11:1353–1364

    Article  CAS  PubMed  Google Scholar 

  49. Cormet-Boyaka E, Jolivette K, Bonnegarde-Bernard A, Rennolds J, Hassan F, Mehta P, Tridandapani S, Webster-Marketon J, Boyaka PN (2012) An NF-kappaB-independent and ERK1/2-dependent mechanism controls CXCL8/IL-8 responses of airway epithelial cells to cadmium. Toxicol Sci 125:418–429

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  50. Oquendo P, Alberta J, Wen DZ, Graycar JL, Derynck R, Stiles CD (1989) The platelet-derived growth factor-inducible KC gene encodes a secretory protein related to platelet alpha-granule proteins. J Biol Chem 264:4133–4137

    CAS  PubMed  Google Scholar 

  51. Boulton TG, Nye SH, Robbins DJ, Ip NY, Radziejewska E, Morgenbesser SD, DePinho RA, Panayotatos N, Cobb MH, Yancopoulos GD (1991) ERKs: a family of protein-serine/threonine kinases that are activated and tyrosine phosphorylated in response to insulin and NGF. Cell 65:663–675

    Article  CAS  PubMed  Google Scholar 

  52. Payne DM, Rossomando AJ, Martino P, Erickson AK, Her JH, Shabanowitz J, Hunt DF, Weber MJ, Sturgill TW (1991) Identification of the regulatory phosphorylation sites in pp42/mitogen-activated protein kinase (MAP kinase). EMBO J 10:885–892

    PubMed Central  CAS  PubMed  Google Scholar 

  53. Rodrik-Outmezguine VS, Chandarlapaty S, Pagano NC, Poulikakos PI, Scaltriti M, Moskatel E, Baselga J, Guichard S, Rosen N (2011) mTOR kinase inhibition causes feedback-dependent biphasic regulation of AKT signaling. Cancer Discov 1:248–259

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  54. Schieven GL (2005) The biology of p38 kinase: a central role in inflammation. Curr Top Med Chem 5:921–928

    Article  CAS  PubMed  Google Scholar 

  55. Engelman JA (2009) Targeting PI3 K signalling in cancer: opportunities, challenges and limitations. Nat Rev Cancer 9:550–562

    Article  CAS  PubMed  Google Scholar 

  56. Shi H, Kong X, Ribas A, Lo RS (2011) Combinatorial treatments that overcome PDGFRbeta-driven resistance of melanoma cells to V600 EB-RAF inhibition. Cancer Res 71:5067–5074

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported by TUBITAK with 109S449 grant number and by Akdeniz University Research Unit (BAP: 2009.06.0103.006).

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Nuray Erin or Esra Nizam.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 295 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Erin, N., Nizam, E., Tanrıöver, G. et al. Autocrine control of MIP-2 secretion from metastatic breast cancer cells is mediated by CXCR2: a mechanism for possible resistance to CXCR2 antagonists. Breast Cancer Res Treat 150, 57–69 (2015). https://doi.org/10.1007/s10549-015-3297-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10549-015-3297-3

Keywords

Navigation