Skip to main content

Advertisement

Log in

Poly (I: C) modulates the immunosuppressive activity of myeloid-derived suppressor cells in a murine model of breast cancer

  • Preclinical study
  • Published:
Breast Cancer Research and Treatment Aims and scope Submit manuscript

Abstract

Polyinosinic-polycytidylic acid [Poly (I: C)], a ligand for Toll-like receptor (TLR-3), is used as an adjuvant to enhance anti-tumor immunity because of its prominent effects on CD8 T cells and NK cells. Myeloid-derived suppressor cells (MDSCs) are one of the main immunosuppressive factors in cancer, and their abnormal accumulation is correlated with the clinical stage of breast cancer and is an important mechanism of tumor immune evasion. Although Poly (I: C) is thought to have direct anti-tumor activity in different cell lines, its effect on immunosuppressive MDSCs in tumor-bearing animals has not been studied. 4T1-Luc, a metastatic breast cancer mouse cell line, was injected into the left flank of female BALB/c mice. Tumor-bearing mice were treated with i.p. injection of Poly (I: C) or PBS beginning on day 7 after tumor inoculation. WBCs and MDSCs were counted using coulter counter and stained for flow cytometry, respectively. Bioluminescent imaging was used to monitor tumor burden at multiple time points during the course of tumor growth. Poly (I: C) treatment led to a decrease in MDSC frequencies in BM, blood, and tumor compared to saline-treated control mice. Poly (I: C) treatment also abrogated the immunosuppressive function of MDSCs, concomitant with an increase in local T cell response of the immune system in a murine model of breast cancer. Poly (I: C) treatment decreases MDSC frequency and immunosuppressive function in 4T1-tumor-bearing hosts and effectively augments the activity of breast cancer immunotherapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

MDSC:

Myeloid-derived suppressor cells

S.C:

Subcutaneous

I.P:

Intra peritoneal

BLI:

Bioluminescence intensity

ROI:

Regions of interest

Luc:

Luciferase

Lin:

Lineage

FACS:

Fluorescent activated cell sorting

IMC:

Immature myeloid cell

References

  1. Zoglmeier C, Bauer H, Norenberg D, Wedekind G, Bittner P, Sandholzer N, Rapp M, Anz D, Endres S, Bourquin C (2011) CpG blocks immunosuppression by myeloid-derived suppressor cells in tumor-bearing mice. Clin Cancer Res 17(7):1765–1775

    Article  CAS  PubMed  Google Scholar 

  2. Finke J (2011) MDSC as a mechanism of tumor escape from sunitinib mediated anti-angiogenic. Inter Immunopharmacol 11:856

    Article  CAS  Google Scholar 

  3. Nakamura H, Horai Y, Suzuki T, Okada A, Ichinose K, Yamasaki S, Koji T, Kawakami A (2013) TLR3-mediated apoptosis and activation of phosphorylated Akt in the salivary gland epithelial cells of primary Sjogren’s syndrome patients. Rheumatol Int 33(2):441–450

    Article  CAS  PubMed  Google Scholar 

  4. Markowitz J, Wesolowski R, Papenfuss T, Brooks TR, Carson WE 3rd (2013) Myeloid-derived suppressor cells in breast cancer. Breast Cancer Res Treat 140(1):13–21

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  5. Harashima N, Inao T, Imamura R, Okano S, Suda T, Harada M (2012) Roles of the PI3 K/Akt pathway and autophagy in TLR3 signaling-induced apoptosis and growth arrest of human prostate cancer cells. Cancer Immunol Immunother 61(5):667–676

    Article  CAS  PubMed  Google Scholar 

  6. Sun R, Zhang Y, Lv Q, Liu B, Jin M, Zhang W, He Q, Deng M, Liu X, Li G et al (2011) Toll-like receptor 3 (TLR3) induces apoptosis via death receptors and mitochondria by up-regulating the transactivating p63 isoform alpha (TAP63alpha). J Biol Chem 286(18):15918–15928

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  7. Taura M, Fukuda R, Suico MA, Eguma A, Koga T, Shuto T, Sato T, Morino-Koga S, Kai H (2010) TLR3 induction by anticancer drugs potentiates poly I:C-induced tumor cell apoptosis. Cancer Sci 101(7):1610–1617

    Article  CAS  PubMed  Google Scholar 

  8. Liechtenstein T, Perez-Janices N, Gato M, Caliendo F, Kochan G, Blanco-Luquin I, Van der Jeught K, Arce F, Guerrero-Setas D, Fernandez-Irigoyen J et al (2014) A highly efficient tumor-infiltrating MDSC differentiation system for discovery of anti-neoplastic targets, which circumvents the need for tumor establishment in mice. Oncotarget 5(17):7843–7857

    PubMed Central  PubMed  Google Scholar 

  9. Ghansah T (2012) A novel strategy for modulation of MDSC to enhance cancer immunotherapy. Oncoimmunology 1(6):984–985

    Article  PubMed Central  PubMed  Google Scholar 

  10. Mignot G, Chalmin F, Ladoire S, Rébé C, Ghiringhelli F (2011) Tumor exosome-mediated MDSC activation. Am J pathol 178(3):1403–1405

    Article  PubMed Central  PubMed  Google Scholar 

  11. Green TL, Santos MF, Ejaeidi AA, Craft BS, Lewis RE, Cruse JM (2014) Toll-like receptor (TLR) expression of immune system cells from metastatic breast cancer patients with circulating tumor cells. Exp Mol Pathol 97(1):44–48

    Article  CAS  PubMed  Google Scholar 

  12. Diaz-Montero CM, Salem ML, Nishimura MI, Garrett-Mayer E, Cole DJ, Montero AJ (2009) Increased circulating myeloid-derived suppressor cells correlate with clinical cancer stage, metastatic tumor burden, and doxorubicin-cyclophosphamide chemotherapy. Cancer Immunol Immunother 58(1):49–59

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  13. Chi N, Tan Z, Ma K, Bao L, Yun Z (2014) Increased circulating myeloid-derived suppressor cells correlate with cancer stages, interleukin-8 and -6 in prostate cancer. Int J Clin Exp Med 7(10):3181–3192

    PubMed Central  PubMed  Google Scholar 

  14. Salaun B, Coste I, Rissoan MC, Lebecque SJ, Renno T (2006) TLR3 can directly trigger apoptosis in human cancer cells. J Immunol 176(8):4894–4901

    Article  CAS  PubMed  Google Scholar 

  15. Cheng YS, Xu F (2010) Anticancer function of polyinosinic-polycytidylic acid. Cancer Biol Ther 10(12):1219–1223

    Article  CAS  PubMed  Google Scholar 

  16. Forghani P, Khorramizadeh MR, Waller EK (2014) Silibinin inhibits accumulation of myeloid-derived suppressor cells and tumor growth of murine breast cancer. Cancer Med 3(2):215–224

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  17. Ray A, Dittel BN (2010) Isolation of mouse peritoneal cavity cells. J Vis Exp 35:1488

    PubMed  Google Scholar 

  18. Forghani P, Harris W, Giver CR, Mirshafiey A, Galipeau J, Waller EK (2013) Properties of immature myeloid progenitors with nitric-oxide-dependent immunosuppressive activity isolated from bone marrow of tumor-free mice. PLoS ONE 8(7):e64837

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  19. Ostrand-Rosenberg S, Sinha P, Chornoguz O, Ecker C (2012) Regulating the suppressors: apoptosis and inflammation govern the survival of tumor-induced myeloid-derived suppressor cells (MDSC). Cancer Immunol Immunother 61(8):1319–1325

    Article  CAS  PubMed  Google Scholar 

  20. Sinha P, Okoro C, Foell D, Freeze HH, Ostrand-Rosenberg S, Srikrishna G (2008) Proinflammatory S100 proteins regulate the accumulation of myeloid-derived suppressor cells. J Immunol 181(7):4666–4675

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  21. Fucikova J, Rozkova D, Ulcova H, Budinsky V, Sochorova K, Pokorna K, Bartunkova J, Spisek R (2011) Poly I: C-activated dendritic cells that were generated in Cell Gro for use in cancer immunotherapy trials. J Trans Med 9:223

    Article  CAS  Google Scholar 

  22. Verdijk RM, Mutis T, Esendam B, Kamp J, Melief CJ, Brand A, Goulmy E (1999) Polyriboinosinic polyribocytidylic acid (poly(I:C)) induces stable maturation of functionally active human dendritic cells. J Immunol 163(1):57–61

    CAS  PubMed  Google Scholar 

  23. Moller I, Michel K, Frech N, Burger M, Pfeifer D, Frommolt P, Veelken H, Thomas-Kaskel AK (2008) Dendritic cell maturation with poly(I:C)-based versus PGE2-based cytokine combinations results in differential functional characteristics relevant to clinical application. J Immunother 31(5):506–519

    Article  PubMed  Google Scholar 

  24. Nagaraj S, Nelson A, Youn JI, Cheng P, Quiceno D, Gabrilovich DI (2012) Antigen-specific CD4(+) T cells regulate function of myeloid-derived suppressor cells in cancer via retrograde MHC class II signaling. Cancer Res 72(4):928–938

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  25. Kulbe H, Thompson R, Wilson JL, Robinson S, Hagemann T, Fatah R, Gould D, Ayhan A, Balkwill F (2007) The inflammatory cytokine tumor necrosis factor-alpha generates an autocrine tumor-promoting network in epithelial ovarian cancer cells. Cancer Res 67(2):585–592

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  26. Charles KA, Kulbe H, Soper R, Escorcio-Correia M, Lawrence T, Schultheis A, Chakravarty P, Thompson RG, Kollias G, Smyth JF et al (2009) The tumor-promoting actions of TNF-alpha involve TNFR1 and IL-17 in ovarian cancer in mice and humans. J Clin Invest 119(10):3011–3023

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  27. Salaun B, Zitvogel L, Asselin-Paturel C, Morel Y, Chemin K, Dubois C, Massacrier C, Conforti R, Chenard MP, Sabourin JC et al (2011) TLR3 as a biomarker for the therapeutic efficacy of double-stranded RNA in breast cancer. Cancer Res 71(5):1607–1614

    Article  CAS  PubMed  Google Scholar 

  28. Bunt SK, Clements VK, Hanson EM, Sinha P, Ostrand-Rosenberg S (2009) Inflammation enhances myeloid-derived suppressor cell cross-talk by signaling through Toll-like receptor 4. J Leukoc Biol 85(6):996–1004

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  29. Conrad E, Resch TK, Gogesch P, Kalinke U, Bechmann I, Bogdan C, Waibler Z (2014) Protection against RNA-induced liver damage by myeloid cells requires type I interferon and IL-1 receptor antagonist in mice. Hepatology 59(4):1555–1563

    Article  CAS  PubMed  Google Scholar 

  30. Aranda F, Llopiz D, Diaz-Valdes N, Riezu-Boj JI, Bezunartea J, Ruiz M, Martinez M, Durantez M, Mansilla C, Prieto J et al (2011) Adjuvant combination and antigen targeting as a strategy to induce polyfunctional and high-avidity T-cell responses against poorly immunogenic tumors. Cancer Res 71(9):3214–3224

    Article  CAS  PubMed  Google Scholar 

  31. Paone A, Starace D, Galli R, Padula F, De Cesaris P, Filippini A, Ziparo E, Riccioli A (2008) Toll-like receptor 3 triggers apoptosis of human prostate cancer cells through a PKC-alpha-dependent mechanism. Carcinogenesis 29(7):1334–1342

    Article  CAS  PubMed  Google Scholar 

  32. Forte G, Rega A, Morello S, Luciano A, Arra C, Pinto A, Sorrentino R (2012) Polyinosinic-polycytidylic acid limits tumor outgrowth in a mouse model of metastatic lung cancer. J Immunol 188(11):5357–5364

    Article  CAS  PubMed  Google Scholar 

  33. Shime H, Kojima A, Maruyama A, Saito Y, Oshiumi H, Matsumoto M, Seya T (2014) Myeloid-derived suppressor cells confer tumor-suppressive functions on natural killer cells via polyinosinic:polycytidylic acid treatment in mouse tumor models. J Innate Immun 6(3):293–305

    CAS  PubMed  Google Scholar 

  34. Ostrand-Rosenberg S, Sinha P, Beury DW, Clements VK (2012) Cross-talk between myeloid-derived suppressor cells (MDSC), macrophages, and dendritic cells enhances tumor-induced immune suppression. Semin Cancer Biol 22(4):275–281

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  35. Dalotto-Moreno T, Croci DO, Cerliani JP, Martinez-Allo VC, Dergan-Dylon S, Mendez-Huergo SP, Stupirski JC, Mazal D, Osinaga E, Toscano MA et al (2013) Targeting galectin-1 overcomes breast cancer-associated immunosuppression and prevents metastatic disease. Cancer Res 73(3):1107–1117

    Article  CAS  PubMed  Google Scholar 

  36. Kovacs-Solyom F, Blasko A, Fajka-Boja R, Katona RL, Vegh L, Novak J, Szebeni GJ, Krenacs L, Uher F, Tubak V et al (2010) Mechanism of tumor cell-induced T-cell apoptosis mediated by galectin-1. Immunol Lett 127(2):108–118

    Article  CAS  PubMed  Google Scholar 

  37. Liu C, Zhang C, Lu H, Cai J, Wang Z, Chen J, Liu F, Wu Z, Liu X, Sun W (2011) Poly(I:C) induce bone marrow precursor cells into myeloid-derived suppressor cells. Mol Cell Biochem 358(1–2):317–323

    Article  CAS  PubMed  Google Scholar 

  38. Danilin S, Merkel AR, Johnson JR, Johnson RW, Edwards JR, Sterling JA (2012) Myeloid-derived suppressor cells expand during breast cancer progression and promote tumor-induced bone destruction. Oncoimmunology 1(9):1484–1494

    Article  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

The authors thank Dr. Ragavan Chinnadurai for his guidance; Wayne Harris for his helpful technical assistance in sorting and Christopher Peterson for help in Western blotting. Also author thanks Anthea Hamond for her careful reading and editing of manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Parvin Forghani.

Ethics declarations

Conflict of interest

The authors disclose no potential conflicts of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

10549_2015_3508_MOESM1_ESM.tif

Figure. S1. Poly (I: C) treatment decreases the frequency and absolute numbers of MDSCs 4T1 tumor cells were implanted into the 1st left mammary fat pad of female BALB/c mice (1 × 106 cells per mouse, n = 4 per group). Blood samples were obtained on week three after tumor inoculation. (A) Flow cytometry analysis of blood showing mean percentages of MDSCs and CD3+ T cells in Poly (I: C)-treated and PBS-treated tumor-bearing mice vs. non-tumor bearing Poly (I: C)-treated mice. Mean frequencies (±SD) from three separate experiments. (B) Absolute numbers of MDSCs and CD3+ T cells in the blood after tumor inoculation in two groups. Two-way ANOVA* shows statistically significant differences from control (p < 0.05) from three independent experiments.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Forghani, P., Waller, E.K. Poly (I: C) modulates the immunosuppressive activity of myeloid-derived suppressor cells in a murine model of breast cancer. Breast Cancer Res Treat 153, 21–30 (2015). https://doi.org/10.1007/s10549-015-3508-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10549-015-3508-y

Keywords

Navigation