Breast Cancer Research and Treatment

, Volume 150, Issue 3, pp 685–695 | Cite as

Targeting exosomes from preadipocytes inhibits preadipocyte to cancer stem cell signaling in early-stage breast cancer

  • Ramkishore Gernapudi
  • Yuan Yao
  • Yongshu Zhang
  • Benjamin Wolfson
  • Sanchita Roy
  • Nadire Duru
  • Gabriel Eades
  • Peixin Yang
  • Qun ZhouEmail author
Brief Report


The tumor microenvironment plays a critical role in regulating breast tumor progression. Signaling between preadipocytes and breast cancer cells has been found to promote breast tumor formation and metastasis. Exosomes secreted from preadipocytes are important components of the cancer stem cell niche. Mouse preadipocytes (3T3L1) are treated with the natural antitumor compound shikonin (SK) and exosomes derived from mouse preadipocytes are co-cultured with MCF10DCIS cells. We examine how preadipocyte-derived exosomes can regulate early-stage breast cancer via regulating stem cell renewal, cell migration, and tumor formation. We identify a critical miR-140/SOX2/SOX9 axis that regulates differentiation, stemness, and migration in the tumor microenvironment. Next, we find that the natural antitumor compound SK can inhibit preadipocyte signaling inhibiting nearby ductal carcinoma in situ (DCIS) cells. Through co-culture experiments, we find that SK-treated preadipocytes secrete exosomes with high levels of miR-140, which can impact nearby DCIS cells through targeting SOX9 signaling. Finally, we find that preadipocyte-derived exosomes promote tumorigenesis in vivo, providing strong support for the importance of exosomal signaling in the tumor microenvironment. Our data also show that targeting the tumor microenvironment may assist in blocking tumor progression.


DCIS Preadipocyte Microenvironment Exosomes MicroRNAs 



This work was supported by Grants from the NCI R01 (Q.Z), the American Cancer Society (Q.Z.) and NCI 5F31CA183522 (G.E.).

Conflict of interest

All authors declare that they have no conflict of interest.


  1. 1.
    Leonard GD, Swain SM (2004) Ductal carcinoma in situ, complexities and challenges. J Natl Cancer Inst 96:906–920CrossRefPubMedGoogle Scholar
  2. 2.
    Fowble B, Hanlon A, Fein D, Hoffman J, Sigurdson E, Patchefsky A, Kessler H (1997) Results of conservative surgery and radiation for mammographically detected ductal carcinoma in situ (DCIS). Int J Radiat Oncol 38:949–957CrossRefGoogle Scholar
  3. 3.
    Cristancho A, Lazar M (2011) Forming functional fat: a growing understanding of adipocyte differentiation. Nat Rev Mol Cell Biol 12:722–734CrossRefPubMedGoogle Scholar
  4. 4.
    Tebbe C, Chhina J, Dar S, Sarigiannis K, Giri S, Munkarah A, Rattan R (2014) Metformin limits the adipocyte tumor-promoting effect on ovarian cancer. Oncotarget 5:4746PubMedCentralPubMedGoogle Scholar
  5. 5.
    Delort L, Lequeux C, Dubois V, Dubouloz A, Billard A, Mojallal A, Damour O, Vasson M, Caldefie-Chézet F (2013) Reciprocal interactions between breast tumor and its adipose microenvironment based on a 3D adipose equivalent model. PLoS One 8:431–437CrossRefGoogle Scholar
  6. 6.
    Dirat B, Bochet L, Dabek M, Daviaud D, Dauvillier S, Majed B, Wang Y, Meulle A, Salles B, Le Gonidec S, Garrido I, Escourrou G, Valet P, Muller C (2011) Cancer-associated adipocytes exhibit an activated phenotype and contribute to breast cancer invasion. Cancer Res 71:2455–2465CrossRefPubMedGoogle Scholar
  7. 7.
    Li Q, Xia J, Yao Y, Gong D, Shi H, Zhou Q (2013) Sulforaphane inhibits mammary adipogenesis by targeting adipose mesenchymal stem cells. Breast Cancer Res Treat 141:317–324CrossRefPubMedGoogle Scholar
  8. 8.
    Bochet L et al (2013) Adipocyte-derived fibroblasts promote tumor progression and contribute to the desmoplastic reaction in breast cancer. Cancer Res 73:5657–5667CrossRefPubMedGoogle Scholar
  9. 9.
    Barcellos-Hoff M, Lyden D, Wang T (2013) The evolution of the cancer niche during multistage carcinogenesis. Nat Rev Cancer 13:511–518CrossRefPubMedGoogle Scholar
  10. 10.
    Simpson RJ, Jensen SS, Lim JW (2008) Proteomic profiling of exosomes: current perspectives. Proteomics 8:4083–4099CrossRefPubMedGoogle Scholar
  11. 11.
    Denzer K, Kleijmeer M, Heijnen H, Stoorvogel W, Geuze H (2000) Exosomes from internal vesicle of the multivesicular body to intercellular signaling device. J Cell Sci 2113:3365–3374Google Scholar
  12. 12.
    Van den Boorn J, Dassler J, Coch C, Schlee M, Hartmann G (2013) Exosomes as nucleic acid nanocarriers. Adv Drug Deliv Rev 65:331–335CrossRefPubMedGoogle Scholar
  13. 13.
    Azmi A (2013) Exosomes in cancer development, metastasis, and drug resistance: a comprehensive review. Cancer Metastasis 32:623–642CrossRefGoogle Scholar
  14. 14.
    Christoph K, Raghu K (2013) Exosomes in tumor microenvironment influence cancer progression and metastasis. J Mol Med 91:431–437CrossRefGoogle Scholar
  15. 15.
    Yang M, Chen J, Su F, Yu B, Su F, Lin L, Liu Y, Huang J, Song E (2011) Microvesicles secreted by macrophages shuttle invasion-potentiating microRNAs into breast cancer cells. Mol Cancer 10:117CrossRefPubMedCentralPubMedGoogle Scholar
  16. 16.
    Lee J, Park S, Jung B, Jeon Y, Lee Y, Kim M, Kim Y, Jang J, Kim C (2013) Exosomes derived from mesenchymal stem cells suppress angiogenesis by down-regulating VEGF expression in breast cancer cells. PLoS One 8:e84256. doi: 10.1371/journal.pone.0084256 CrossRefPubMedCentralPubMedGoogle Scholar
  17. 17.
    Li Q, Eades G, Yao Y, Zhang Y, Zhou Q (2014) Characterization of a stem-like subpopulation in basal-like ductal carcinoma in situ (DCIS) lesions. J Biol Chem 289:1303–1312CrossRefPubMedCentralPubMedGoogle Scholar
  18. 18.
    Yao Y, Zhou Q (2010) A novel antiestrogen agent Shikonin inhibits estrogen-dependent gene transcription in human breast cancer cells. Breast Cancer Res Treat 121:233–240CrossRefPubMedGoogle Scholar
  19. 19.
    Yao Y, Brodie A, Davidson N, Kensler T, Zhou Q (2010) Inhibition of estrogen signaling activates the NRF2 pathway in breast cancer. Breast Cancer Res Treat 124:585–591CrossRefPubMedCentralPubMedGoogle Scholar
  20. 20.
    Zhang Y, Qian R, Li P (2009) Shikonin, an ingredient of Lithospermum erythrorhizon, down-regulates the expression of steroid sulfatase genes in breast cancer cells. Cancer Lett 284:47–54CrossRefPubMedGoogle Scholar
  21. 21.
    Eades G, Yao Y, Yang M, Zhang Y, Chumsri S, Zhou Q (2011) miR-200a regulates SIRT1 expression and epithelial to mesenchymal transition (EMT)-like transformation in mammary epithelial cells. J Biol Chem 286:25992–26002CrossRefPubMedCentralPubMedGoogle Scholar
  22. 22.
    Spangenburg E, Stephen JPP, Lindsay MW, Richard L (2011) Use of BODIPY (493/503) to visualize intramuscular lipid droplets in skeletal muscle. J Biomed Biotechnol 2011:598358. doi: 10.1155/2011/598358 CrossRefPubMedCentralPubMedGoogle Scholar
  23. 23.
    Théry C, Amigorena S, Raposo G, Clayton A (2006) Isolation and characterization of exosomes from cell culture supernatants and biological fluids. Curr Protoc Cell Biol. doi: 10.1002/0471143030.cb0322s30 Chapter 3:Unit 3.22PubMedGoogle Scholar
  24. 24.
    Iyengar P, Combs T, Shah S, Gouon-Evans V, Pollard J, Albanese C, Flanagan L, Tenniswood M, Guha C, Lisanti M, Pestell R, Scherer P (2003) Adipocyte-secreted factors synergistically promote mammary tumorigenesis through induction of anti-apoptotic transcriptional programs and proto-oncogene stabilization. Oncogene 22:6408–6423CrossRefPubMedGoogle Scholar
  25. 25.
    Wang Y, Sul H (2009) Pref-1 regulates mesenchymal cell commitment and differentiation through Sox9. Cell Metab 9:287–302CrossRefPubMedCentralPubMedGoogle Scholar
  26. 26.
    Zhang Y, Eades G, Yao Y, Li Q, Zhou Q (2012) Estrogen receptor α signaling regulates breast tumor-initiating cells by downregulating miR- 140 which targets the transcription factor SOX2. J Biol Chem 287:41514–41522CrossRefPubMedCentralPubMedGoogle Scholar
  27. 27.
    Miyaki S, Nakasa T, Otsuki S et al (2009) MicroRNA-140 is expressed in differentiated human articular chondrocytes and modulates interleukin-1 responses. Arthritis Rheum 60:2723–2730CrossRefPubMedCentralPubMedGoogle Scholar
  28. 28.
    Li Q, Yao Y, Eades G, Liu Z, Zhang Y, Zhou Q (2014) Downregulation of miR-140 promotes cancer stem cell formation in basal-like early stage breast cancer. Oncogene 33:2589–2600CrossRefPubMedCentralPubMedGoogle Scholar
  29. 29.
    Tessitore L, Vizio B, Pesola D, Cecchini F, Mussa A, Argiles J, Benedetto C (2014) Adipocyte expression and circulating levels of leptin increase in both gynaecological and breast cancer patients. Int J Oncol 24:1529–1535Google Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Ramkishore Gernapudi
    • 1
  • Yuan Yao
    • 1
  • Yongshu Zhang
    • 1
  • Benjamin Wolfson
    • 1
  • Sanchita Roy
    • 1
  • Nadire Duru
    • 1
  • Gabriel Eades
    • 1
  • Peixin Yang
    • 2
  • Qun Zhou
    • 1
    Email author
  1. 1.Department of Biochemistry and Molecular Biology, Greenebaum Cancer CenterUniversity of Maryland School of MedicineBaltimoreUSA
  2. 2.Department of ObstetricsGynecology & Reproductive Sciences at University of Maryland School of MedicineBaltimoreUSA

Personalised recommendations